当前位置:育文网>教学文档>教案> 分数乘法教案

分数乘法教案

时间:2022-02-20 15:27:42 教案

分数乘法教案集锦8篇

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。那么优秀的教案是什么样的呢?以下是小编为大家整理的分数乘法教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数乘法教案集锦8篇

分数乘法教案 篇1

  教学目标

  使学生理解分数乘分数的法则适用于分数和整数相乘,提高分数乘法计算的熟练程度。

  教学重难点

  用分数乘分数的法则计算分数和整数相乘。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固练习。

  四、课堂小结

  五、作业

  1、在分数乘法里,我们学过哪几种情况的计算?

  2、把下面的数改写成分母是1的假分数。(口答)

  36813

  3、把下面的乘法算式改写成分数乘分数的形式。

  2/11×36×

  上面两题都是什么数和什么数相乘?

  怎样改写成分数乘分数的形式?

  为什么可以这样改写?这就把分数和整数相乘改写成了怎样的数相乘?

  1、统一法则

  由于整数可以看成分母是1的分数,所以分数和整数相乘就可以改写成分数乘分数,按分数乘分数的'法则来计算。这就是说,分数乘分数的计算法则,也适用于分数和整数相乘。

  2、引导计算

  把这里的两道分数和整数相乘的题按分数乘分数的法则计算出结果。

  说说为什么?

  3、教学约分方法

  分数乘法计算时,为了简便,还可以直接约分。

  看课本10页上的计算。

  说说是怎样直接约分的?

  1、练一练上下练习

  2、练习二7说出错误和改正的方法。

  3、练习二8

  前2题:每组里哪几题可以直接约分,那些不能,并说明理由。

  后2题:说说有什么不同的地方,并口算出结果。

  4、练习二9口算

  5、练习二11自己练习,说说想法

  练习二10

  板书约分、计算过程。

  课后感受

  由于前面的基础较好,学生学起来挺轻松,但计算方面还有待加强。

分数乘法教案 篇2

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的.1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘法教案 篇3

  教学目标和要求

  1、结合具体情境,进一步探索并理解分数乘整数的意义;

  2、进一步巩固分数乘整数的计算方法;

  3、能解决简单的分数与整数相乘的实际问题,体会数学与生活的密切联系。

  教学重点

  理解并掌握求一个数的几分之几的.解答方法。

  教学时数

  1课时

  教学过程

  一、理解并掌握求一个数的几分之几的解答方法。

  1、出示教科书第5页情境图。让学生说说从图中了解到的信息。然后同桌同学互相讨论,如何求(1)淘气有多少个苹果?

  可能会出现两种解法:6÷2=3(个)6×1/2=3(个)

  教师引导学生说说算式的意义,让学生明白这两个算式都表示求6的1/2是多少。

  继续让学生求出(2)笑笑有多少个苹果?

  让学生理解求一个数的几分之几用乘法计算。

  2、练习:

  (1)教科书第5页“试一试”第1题。

  学生独立完成,指名板演,集体讲评。

  (2)教科书第6页“试一试”第2题。

  先说说“九折”是什么意思?然后独立计算。

  二、课堂练习。

  1、教科书第6页“练一练”第2题。

  学生在课本上计算,指名板演,集体讲评。强调“先约分再计算”。

  2、教科书第6页“练一练”第1、3题。

  提醒学生认真读题。学生完成后再讲评。

  3、教科书第6页“练一练”第4题。

  先让学生完成,在说说解题思路。

分数乘法教案 篇4

  教学目标

  1.进一步掌握分数乘法应用题的数量关系.

  2.学会用一个数乘分数的意义解答两步分数乘法应用题.

  教学重点

  1.掌握两步分数应用题的解题思路和方法.

  2.画线段图分析应用题的能力.

  教学难点

  分析两次单位“1”的不同之处.

  教学过程

  一、复习、质疑、引新

  (一)指出下面分率句中的单位“1” .

  1.乙是甲的

  2.小红的身高是小明的

  3.参加合唱队的同学占全班同学的

  4.乙的 相当于甲

  5.1个篮球的价钱是一个排球价钱的 倍

  (二)口头分析并列式解答

  1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

  2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

  (三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

  (出示课题——分数应用题)

  二、探索、悟理

  (一)出示组编的例题

  例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

  1.思考讨论

  (1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

  (2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?

  2.汇报思路讲方法

  根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

  由此基础上试列综合算式:

  (二)巩固练习

  小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

  1.分析数量关系,独立画图并列式解答.

  2.学生板演.

  (张)

  (张)

  答:小明有40张.

  3.综合算式

  三、归纳、明理

  用连乘解答的题有什么特点?”“解题思路是什么?”

  1.认真读题弄清条件和问题

  2.确定单位“1”找准数量关系

  根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

  3.列式解答

  板书:抓住分率句,找准单位“1”,

  画图来分析,列式不用急.

  四、训练、深化

  (一)联想练习根据下面的每句话,你能想到什么?

  1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

  2.修了全长的

  3.现在的售价比原来降低了

  (二)先口头分析数量关系,再列式解答.

  1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

  2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

  (三)提高题.

  六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

  五、课后作业

  (一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

  (二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的.,小勇跑的是小雄的 .小刚和小勇各跑多少千米?

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

  教案点评:

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

  这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案 篇5

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的.是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法教案 篇6

  本课题教时数:1本教时为第1教时备课日期9月17日

  教学目标

  进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学重难点

  进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭题

  二基本联系

  三、合练习

  四、堂小结

  五、作业

  这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  1、提问:解答分数应用题的关键是什么?

  2、根据条件找单位1,说说数量关系式

  (题目见幻灯课件)

  3、解答应用题

  例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的,已经行了多少千米?

  问:这道题可以怎样想?为什么用乘法算?

  1、对比练习

  做复习题第9题

  问:这两题有什么相同的地方和不同的地方?

  在解法上有什么相同的地方?

  2、做复习第10题

  让学生说说是怎么想的'?

  追问:第一步要求什么?把哪个数量看作单位1第二步求什么?又是把哪个数量看作单位1?

  3、做复习第11题

  4、做复习第12题

  讨论:有什么办法知道哪一辆车离中点近一些?

  这堂课复习了什么内容?分数乘法应用题的解题关键是什么?基本数量关系是怎样的?连续求一个数的几分之几的分数连乘应用题要怎样解答?

  复习第7、8题

  课后感受

  要让学生学会想到有困难时可借助线段图帮助理解。

  授课日期9月23日

分数乘法教案 篇7

  教学目标

  知识与技能

  结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

  过程与方法

  通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  情感态度与价值观

  通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点 理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点 推导算理,总结法则。

  教法与学法 直观演示法

  教学准备及手段 根据例题制作的挂图、投影片或多媒体课件。

  教学内容:

  教材第3页及相关教学内容”

  教学过程:

  一、复习导入

  1、计算下列各题并说出计算方法。

  ×4 ×4 ×14×

  2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)

  二、探索新知

  (一)一个数乘分数的意义

  1.投影出示例题2。

  (1)问题一:3桶水共多少升?

  指名列出算式:12×3。

  提问:你是怎么想的?

  启发学生得出:求“3桶水共多少升?”就是求3个12L,也就是求12L的3倍是多少。(2)问题二:桶水共多少升?

  指名列出算式:12×。

  提问:根据什么列示的?

  启发学生思考:桶就是半桶,求桶是多少升?就是求12L的一半是多少,也就是求12L的是多少。

  (3)问题三:桶水共多少升?

  指名列出算式:12×。

  提问:你是怎么想的?

  启发学生思考:求桶是多少?就是求12L的是多少。

  2.结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?

  12×表示12L的是多少:12×表示12L的是多少。

  3.总结:一个数乘分数的意义。

  一个数乘几分之几表示的是求这个数的几分之几是多少。

  4.完成教材第3页“做一做”。

  引导:这道题求吃了多少千克,也就是求3千克的是多少千克。

  (二)分数乘分数的计算方法。

  投影出示例题3。

  李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。

  1.问题一:种土豆的面积是多少公顷?

  (1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?

  (实际上就是求公顷的是多少公顷,列示是:×。)

  (2)探究×的计算方法。

  ①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。

  ②再涂出公顷的。

  引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。

  ③观察交流。

  观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?

  先让学生在小组内交流,在组织全班交流。

  通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。

  板书:×===(公顷)

  2.问题二:种玉米的'面积是多少公顷?

  ⑴学生独立列出算式:×

  ⑵提问:“×”等于多少呢?你能用颜色表示的吗?

  ⑶学生动手操作,交流计算方法和思路。

  与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)

  3.分数乘分数的计算方法。

  先小组讨论,再汇报交流。

  计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)

  三、巩固练习。

  1.教材第4页“做一做”第1题。

  这道题是有关一个数乘分数的意义的练习。

  组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。

  2.教材第5页“做一做”第2题。

  这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。

  组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。

  3.教材第5页“做一做”第3题。

  这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。

  4.教材第6页“练习一”第4、5题。

  先学生独立计算,并让学生说一说是怎么想的。

  四、全课小结。

  作业设计 练习二第3、4题。

  板书设计 分数乘法

  12×3

  想:求3个12L,也就是求

  12L的3倍是多少。⑴种土豆的面积是多少公顷?

  12××===(公顷)

  想:求12L的一半,就是求⑵种玉米的面积是多少公顷?

  12L的是多少。×===(公顷)

  12×分数乘分数,用分子相乘的积作分子,

  想:求12L的是多少。用分母相乘的积作分母。

分数乘法教案 篇8

  教学内容:

  教材第2页例1练习一1~3。

  教学目标:

  1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。

  2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。

  3、在探索与交流活动中培养观察、推理的能力。

  教学重点:

  理解他数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:

  理解分数乘整数的计算方法。

  教学过程:

  一、复习旧知,引出课题。

  1、复习题。

  (1)列式并根据题意说出算式中的两个乘数各表示什么。

  5个12是多少? 9个11是多少? 8个6是多少?

  提问:通过解决这三道整数乘法计算题,你有什么想说的吗?

  (整数乘法是表示几个相同加数的和的简便运算)

  (2)计算:

  计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

  2、引出课题。

  这题我们还可以怎么计算?今天我们就来学习分数乘法。

  二、创设情境,探究分数乘整数。

  1、教学分数乘整数的意义。

  出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?

  (1)分析演示

  题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )

  确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。

  借助示意图理解题意

  根据题意列出加法算式 + +

  (2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。

  教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

  (3)比较 和125两种算式异同

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:相同点:两个算式表示的意义相同。

  不同点: 是分数乘整数,125是整数乘整数。

  (4)概括总结

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2、教学分数乘以整数的计算法则。

  (1)推导算理:由分数乘整数的意义导入。

  问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察: 的'分子部分、分母与算式 两个数有什么关系?(互相讨论)

  观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。

  (3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)

  汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

  根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

  3、反馈练习:看图写算式:做一做、练习一第1题。

  三、全课小结。

【分数乘法教案】相关文章:

分数乘法教案01-17

分数乘法的教案02-28

《分数乘法》教案06-08

关于分数乘法教案05-18

关于分数乘法的教案03-31

分数乘法教案九篇02-24

分数乘法教案15篇01-19

分数乘法教案15篇01-22

分数乘法教案(15篇)02-01

分数乘法简便运算教案03-09