当前位置:育文网>教学文档>教案> 《中心对称图形》教案

《中心对称图形》教案

时间:2024-07-31 13:10:08 偲颖 教案

《中心对称图形》教案(通用11篇)

  作为一名教学工作者,常常需要准备教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?下面是小编精心整理的《中心对称图形》教案,仅供参考,欢迎大家阅读。

《中心对称图形》教案(通用11篇)

  《中心对称图形》教案 1

  一、学习目标

  1、理解圆的描述定义,了解圆的集合定义。

  2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题。

  学习重难点会确定点和圆的位置关系。

  二、知识准备:

  1、说出几个与圆有关的成语和生活中与圆有关的物体。思考:车轮为什么做成圆形?

  2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?

  三、知识梳理:

  本节你有何收获?

  四、达标检测

  1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在

  2、⊙O的半径6cm,当OP=6时,点A在;当OP时点P在圆内;当OP时,点P不在圆外。

  3、到点P的距离等于6厘米的点的集合是________________________________________

  4、已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的'对称点P′与⊙O的位置为()(A)在⊙O内(B)在⊙O外(C)在⊙O上(D)不能确定

  5、已知矩形ABCD的边AB=3厘米,AD=4厘米(直接写出答案)

  (1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

  (2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

  (3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

  6、在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。

  7、已知:如图,BD、CE是△ABC的高,为BC的中点.试说明点B、C、D、E在以点为圆心的同一个圆上。

  《中心对称图形》教案 2

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的.识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  《中心对称图形》教案 3

  一、教学目标:

  1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

  2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

  二、教学重、难点:

  理解中心对称图形的概念及其基本性质。

  三、教学过程:

  (一)创设问题情境

  1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

  【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好,然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

  (课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

  师重复以上活动

  2次后提问:

  (1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

  (2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

  (反思:创设问题情境主要在于下面几点理由:

  (1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

  (2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。

  (3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

  2.教师揭示谜底。

  利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转1800后和原来牌面一样。

  3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

  (1)只有一张扑克牌图案颠倒后和原来牌面一样。

  (2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。

  (反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)

  (二)学生分组讨论、思考探究:

  1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

  生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

  2.你能将下列各图分别绕其上的.一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“Z+Z”演示其旋转过程。)

  3.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

  (对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

  (三)教师明晰,建立模型

  1.给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2.对比轴对称图形与中心对称图形:(列出表格,加深印象)

  轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转1880O对折后与原图形重合

  旋转后与原图形重合

  (四)解释、应用与拓广

  1.教师用“Z+Z

  智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

  (利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

  2.探究中心对称图形的性质

  板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

  3.师问:怎样找出一个中心对称图形的对称中心?

  (两组对应点连结所成线段的交点)

  4.平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

  学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

  5.逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

  学生讨论回答。

  6.你还能找出哪些多边形是中心对称图形?

  (反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

  (五)拓展与延伸

  1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

  2.正六边形的对称中心怎样确定?

  (六)魔术表演:

  1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?

  2.学生小组活动:

  以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

  (新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

  四、案例小结

  《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

  现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

  《中心对称图形》教案 4

  教学内容

  1、中心对称图形的概念。

  2、对称中心的概念及其它们的运用。

  教学目标

  了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。

  复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用。

  重难点、关键

  1、重点:中心对称图形的有关概念及其它们的运用。

  2、难点与关键:区别关于中心对称的两个图形和中心对称图形。

  教学过程

  一、复习引入

  1、口答:关于中心对称的两个图形具有什么性质?

  关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  关于中心对称的`两个图形是全等图形、

  2、(学生活动)作图题、

  (1)作出线段AO关于O点的对称图形,如图所示。

  (2)作出三角形AOB关于O点的对称图形,如图所示。

  (2)延长AO使OC=AO,

  延长BO使OD=BO,

  连结CD

  则△COD为所求的,如图所示。

  二、探索新知

  从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它重合。

  上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示。

  ∵AO=OC,BO=OD,∠AOB=∠COD

  ∴△AOB≌△COD

  ∴AB=CD

  也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合。

  因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  (学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形。

  老师的点评:老师边提问学生边解答。

  (学生活动)例2:请说出中心对称图形具有什么特点?

  老师的点评:中心对称图形具有匀称美观、平稳。

  例3、求证:如图任何具有对称中心的四边形是平行四边形。

  《中心对称图形》教案 5

  教学内容:

  人教版小学数学五年级下册轴对称图形

  教学目标:

  1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

  2、探索掌握轴对称图形的基本特征。

  3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

  教学重点:

  理解轴对称图形的特征。

  教学难点:

  掌握并能准确辨别较为复杂的轴对称图形。

  教具准备:

  多媒体课件、图片等。

  教学过程:

  一、创设激趣

  谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。)

  提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?

  学生回答。

  生1:它是对称图形。

  生2:给它画上一只脚。

  教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)

  选择学生熟悉和感兴趣的生活素材,吸引学生的注意,激发学生主动参与学习活动的热情,初步感知物体的对称性,学生学习兴趣较浓。

  二、探索轴对称图形的特征

  1、课件出示天安门、蜻蜓、枫叶等图片。引导学生观察图片上的物体,说说它们有什么共同特征。

  教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)

  引导学生用手摸一摸对折后的两边,说说有什么样的感觉。得出结论:这些图形对折后“两部分完全重合”。(动画演示对折过程)

  介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。(板书轴对称图形定义)。中间这条折痕就是轴对称图形的对称轴。(板书:对称轴)

  谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)

  2、试一试

  谈话:今天,老师还给大家带来了几位朋友,想和大家一起玩游戏,好吗?出示有几种不同的平面图形。

  引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的'图形哪些是轴对称图形?

  汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

  让学生充分利用自己的生活经验,在观察和操作中形成轴对称图形的初步概念。

  4、判断轴对称图形

  谈话:下面我们一起到“轴对称图形博物馆”去看看。(课件出示)

  小组派代表汇报合作过程中发现的问题和解决的方法以及判断的结果及理由。

  三、制作轴对称图形

  谈话:你能自己创造一个美丽的轴对称图形吗?

  引导学生制作轴对称图形。(展示学生的作品)

  培养学生的动手操作能力和实践能力,同时体验到成功的喜悦,进一步掌握轴对称图形的基本特征。

  四、感受轴对称美

  谈话:生活中有那么多轴对称图形和具有轴对称特征的物体,是因为轴对称图形本身就是一种美。

  电脑播放图片,让学生感受轴对称的美。

  谈话:轴对称图形在我们的身边也有许多,让我们一起去感受它的美吧!

  设计意图:利用多媒体课件图、文、声、像并茂的特点,向学生展示了生活中的对称现象。美妙的图形深深地吸引了学生,学生的思绪因插上想象的翅膀而飞扬,真切地感受感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。

  五、小结

  此时此刻,你最想说什么呢?

  生1:轴对称图形真美啊!

  生2:轴对称图形真多啊!

  板书设计:

  轴对称图形

  两侧图形完全重合

  对称轴

  《中心对称图形》教案 6

  目标:

  1.通过看一看、数一数,进一步认识轴对称图形的概念,探索并掌握轴对称图形的特征和性质。

  2.学会画出轴对称图形的另一半,能够在方格纸上画出一个图形的轴对称图形。

  教学重、难点:

  探索并掌握轴对称图形的特征和性质。

  教学准备:

  白板课件、探究表、尺子、剪刀

  教学过程:

  一、进一步认识轴对称图形

  师:在大自然中,有很多具有“对称美”的事物,例如雪花、蝴蝶、鲜花……人们发现了这种“对称美”,并运用于生活中,设计出了漂亮的图案。想像一下,将这幅图案沿其中的一条对称轴对折(点击出示对称轴),会出现什么情况?

  生:只剩一半。

  师:是只剩一半吗?那另一半哪去啦?

  生:重合了。

  师(小结):像这样,一个图形沿着一条直线对折,两侧能够完全重合的,就是轴对称图形。折痕所在的直线就是对称轴。(课件出示)

  【设计说明:本环节教师利用多媒体手段的优势,化静为动,充分展示了大自然的对称美,从一朵雪花,经过无数次翻转铺满一大片雪花,动画将图形对折展开的过程演绎得淋漓尽致,给抽象的概念教学赋予灵动形象的生命力,既让学生初步感知了重合对称,又让学生在视觉冲击下领略到数学的神奇魅力,点燃了学生欲罢不能的求知欲望。】

  二、探索轴对称图形的性质

  师(出示例1图的左半部分):这儿有一个轴对称图形,想像一下,完整的图案是什么?(一棵松树、2棵小草)

  师:这里有三幅图,你认为选择哪幅可以和这一半构成一个完整的轴对称图形?先思考,再在小组里说说你选择的'结果和理由。(组织学生交流)你们选择的是第几幅图?(请选错的学生上台摆一摆)

  生1:选第(1)幅。(错误。左右两侧的小草方向相同)

  生2:不对,两棵小草的方向相同,不对称。

  师:你们认为两棵小草的方向应该是怎么样的?

  生(对折验证):方向相反。

  师:真细心!关注到了小草的方向。

  生3:选第(2)幅。(错误。右侧小草距离松树只有1格)

  生4:不对,两棵小草距离松树不相等,也不对称。

  师:以松树为中心,比较两棵小草到松树的距离,真会思考!为什么大家都选第(3)幅?

  生5:两侧的图形方向相反。

  生6:小草距离松树相等才对称。

  师(小结):看来,两幅图要成轴对称,得具备一定的条件——方向相反,和中心等距。

  师:刚才有同学提出,左右两侧的小草距离松树都是2格。它们距离对称轴又是几格?你们是怎么数的?(指明数,并用红笔标注。)

  师(指图讲解):在左侧,从这一点数到对称轴的,我们记为点D。在右侧,和D相对的这一点我们记作D′,像D和D′这样相对的两点,叫做对应点。D′是D的对应点。这样的对应点在轴对称图形中还有很多。下面,大家就小组合作,按照要求再找找其他的对应点,数一数,看看有什么发现?

  (1)找出图中A、B、C三点的对应点,在图中分别用A′、B′、C′标出来。(2)数一数这几组对应点到对称轴的距离,你有什么发现?

  全班交流:(1)你是怎么找到点A的对应点的?(如果没法对折,又该怎么找啊?)明确数的方向:先在左侧数出点A距离对称轴2格,再从对称轴往右数2格,就确定了A′位置。

  (2)有什么发现?明确:在轴对称图形中,对应点到对称轴的距离相等,对应点连线垂直于对称轴。

  师:利用这个性质,我们不仅能判断一个图形是否是轴对称图形,还能画出轴对称图形。(出示例2)

  【设计说明:本环节打破教材的束缚,创造性地改编了教材,课堂上凸显了学生的主导地位。只出示例1图的左半部分,让学生想象是什么图案,给了学生极大的想象空间,精心设计有代表性的三幅图让学生在选择、拖动图案验证的过程中,亲历了自我发现问题,不断地解决问题的过程,知识点也在出错、纠错中越辩越明。】

  三、探索轴对称图形的画法

  师:结合刚才的发现先想一想,怎样才能画得又快又好?

  生1(演示操作):在给出的图中先找几个关键的点(如屋檐的点、墙与屋檐的连接点、墙角的点);根据轴对称的性质(对应点到对称轴的距离相等,对应点连线垂直于对称轴)在对称轴的另一侧找到关键点的对应点;连接对应点。

  师:借鉴了轴对称的性质找对应点,再连线,这样的方法看起来不错!大家试一试!

  师(小结):利用轴对称图形对应点到对称轴的距离相等这一性质,的确可以帮助我们准确地画好轴对称图形。

  【设计说明:自主学习是现行素质教育极力倡导的学习方式,数学学习是学生自主建构模型的过程,本环节是学生在掌握了轴对称图形的性质的基础之上,通过独立思考、观察,尝试操作、交流等活动,最终在探究过程中形成了数学模型的建构。】

  四、总结延伸

  通过今天的学习,你学到了什么?

  《中心对称图形》教案 7

  学情分析:

  由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。

  设计理念:

  图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。

  教学目标:

  1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的'方法创造出轴对称图形。

  2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

  3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。

  重点:

  让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。

  教学过程:

  一、创设情景,激趣导入。

  (1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。

  师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。

  (创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)

  二、感悟特征,“识”对称。

  1、出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。

  2、引导学生动手操作。(课本附页的图形)。

  引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。

  3、出示各种几何图形,让学生小组合作,探究其是否对称。4、认识轴对称图形、对称轴定义

  师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折完全重合)。

  把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕对称轴)。

  (本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)

  三、深化认识,“做”对称。

  (1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。

  (2)展示学生作品。说说各自的创作方法。

  (在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)

  四、多向拓展,“辩”对称。

  1、课件出示:天天开心。(心:是剪出来的轴对称图形)引导学生观察,发现“天”字也是轴对称的图形。2、出示字母:BANG

  引导学生判断各个字母是否轴对称图形,出现争议的字母B,引导学生验证结果。

  3、挑战难题,激励优胜。

  ①“木”字的一半

  ②看似轴对称的“奉”字,让学生判断分析,合成“棒”字激励学生。

  4、指导学生掌握学习方法:(猜测——验证——总结)

  5、引导学生列举生活中的例子。

  (多向拓展,让学生感悟数学在我们生活中无处不在。)

  五、升华认识,赏对称。

  1、欣赏短片

  2、说一说。

  出示短片中不止一个对称轴的图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。

  (通过赏析,引导学生感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。)

  六、课堂小结

  出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)

  (本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)

  师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。

  板书设计:轴对称图形

  (猜测——验证——总结)

  对折完全重合

  折痕对称轴

  教学反思:

  我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。

  《中心对称图形》教案 8

  【教学内容】

  人教版义务教育课程标准实验教科书二年级上册P68。

  【教学目标】

  1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

  2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。

  3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。

  【教学重点】

  认识轴对称图形的基本特征。

  【教学难点】

  设计制作轴对称图形。

  【教具、学具准备】

  教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。

  【教学过程】

  一、创设情境,感受对称

  1、认识生活中的对称现象。眼镜导入新课。

  二、小组合作,探讨轴对称图形的特征

  1、认识对称图形

  师:看,老师还给大家带来了几张美丽的图片。

  生:蜻蜓、树叶、蝴蝶、脸谱的图片

  师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?

  生1:它们的两边一样的。

  生2:它们是对称的。

  师:你是怎样理解对称的?

  生2:它们的两边是一样的。

  师:这些图形真像你们说的那样,左右两边完全一样吗?

  生:是。

  师:谁能想个办法来验证这些图形左右两边完全一样呢?

  生:对折。

  师:对折,这个方法听起来倒挺不错的,(板书:对折)到底怎样对折,你能折给大家看一看吗?

  生:上台演示折蝴蝶图形

  师:刚才这位孩子用对折的方法证明了这个蝴蝶图形的左右两边是完全一样的。那大家也来试一试,好吗?

  生齐:好。

  师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的`两边是一样的吗?开始吧。

  生:动手操作

  师:谁来说说你验证的结果?

  生1:我折的是脸谱图形,对折后它的两边是一样的。

  生2:我折的是蜻蜓图形,它对折后,两边是一样的。

  生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。

  生4:我折的是树叶图形,对折后,它的两边也是完全一样的。

  师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。

  师:老师这里还有一个图形,是什么?

  生:桃子图形。

  师:想折吗?

  生齐:想。

  师:这个图形就在你们的3号信封里,小组长拿出来分给同学们折一折,说说你发现了什么?

  生1:我发现了桃子图形一边大,一边小。

  生2:它没有重合。

  师:一点都没有吗?

  生齐:有一点。

  师:蝴蝶图形呢?

  生齐:全部重合了。

  师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。

  师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)

  教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)

  2、认识对称轴

  师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)

  生:有一条线。

  师:这一条线就是我们刚才折的折痕。

  师:这条折痕是怎么形成的?有什么特别的地方?

  生1:是对称图形对折后形成的。

  生2:折痕的两边是完全一样的。

  师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)

  师:我们通常用虚线来表示对称轴。(板书:画对称轴)

  师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。(板书:轴)

  三、应用拓展、巩固新知

  1、判断轴对称图形

  师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:P68的做一做)

  2、猜一猜

  师:老师给你们看几张轴对称图形,不过我只给你们看它的一半,你们能猜出它们是我们所学过的哪些汉字、数字或英文字母吗?

  3、找对称轴

  师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!

  (课件依次出示:长方形、正方形、圆形)

  师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)

  四、师生共结

  师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。

  《中心对称图形》教案 9

  教学内容

  义务教育课程标准实验教材数学第六册56—61页内容

  教学资源分析:

  本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。

  教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知“这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。教材这样安排的主要目的是帮助学生感受生活中的对称现象。接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。

  教学目标:

  1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的`对称现象,认识轴对称图形的一些基本特征。

  2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

  教学重点

  使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  教学难点:

  引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。

  教学准备

  多媒体课件一套,每组有不同的图形一套,想想做做2所要求的字母一套,小剪刀,彩纸,水彩画颜料,钉子板等等

  一、猜一猜——激趣导入

  师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?

  (多媒体出示:枫叶、蜻蜓、天平等物体的一半,让学生猜一猜,猜中就出示物体的全幅图)

  师:是啊,这些物体可真有趣,你知道它们有趣在哪里吗?

  (让学生自由说)

  小结:是的,它们可以分为两个完全相同的部分。

  设计意图:有趣的“猜一猜”游戏,不但激发了学生的好奇,而且让学生初步感受到:有些物体可以分为两个完全相同的部分,同时也为学生感知轴对称图形的特征作了铺垫。

  二、观察、操作——探究特征

  1、观察,初步感知

  师:老师还带来了一组物体的图片,请小朋友仔细观察这三个物体,你能发现它们共同特征的吗?

  (多媒体出示天安门、飞机、奖杯,让学生自由说一说)

  师:(小结)是的,这些物体都是对称的。

  师:在生活中你还见过那些物体也具有对称的特征吗?

  (自由说,全班交流)

  2、操作,体会特征

  师:如果把上面的物体画下来,我们可以得到下面的图形。

  (多媒体出示按天安门、飞机、奖杯的实物画下来的图形)

  我们小朋友手中也有一些这样的图形,请小朋友选一个,对折,然后跟同学说一说,你发现了什么?

  (选三人在实物投影上交流)

  师:这三个图形有什么共同的特征吗?(指名说)

  小结:是啊,它们对折后,折痕两边的部分完全重合。像这样的图形,我们叫它轴对称图形!你能跟同桌说说什么是轴对称图形吗?(学生自由说后,多媒体出示轴对称图形的概念,齐读)

  3、识别,加深体验

  师:我们认识的一些图形娃娃今天也来到这里,请你仔细观察这些图形,找一找,它们中哪些也是轴对称图形呢?

  (请小组长拿出预先准备好的图形,组织大家讨论,不确定的可以动手折一折,然后全班交流。)

  师:请小组长把轴对称图形图形整理出来,分工让每一个小朋友动手折一折,这些轴对称图形有几种对折的方法?

  (指名一组在实物投影上交流)

  小结:要使对折后折痕两边的部分完全重合,等腰三角形、等腰梯形只有一种对折的方法。长方形有两种对折的方法,正方形有4种对折的方法,这个特殊的五边形有五种对折的方法,而圆有无数种对折的方法呢!不管是一种还是很多种对折方法,只要对折后折痕两边的部分能够完全重合,这图形就是轴对称图形。

  设计意图:在认识轴对称图形的特征时,教者安排了三个层次的教学环节:第一层次,让学生在丰富的实例中进行感知,第二层次让学生在充分的操作中感知,第三层次放手让学生进行独立的选择和判断。层层深入,有利于学生更好地认识轴对称图形。

  4、训练,巩固特征

  (1)完成想想做做,实物投影出示图形

  师:这是我们生活中常看到的一些图形,你能判断出它们中哪些是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,并且用尺子画出一条虚线来表示你准备怎样对折,全部完成了,由小组长组织大家讨论,全班交流)

  (2)完成想想做做,实物投影出示图形

  师:看来,小朋友已经能根据轴对称图形的特征识别出生活中的许多轴对称图形了。你们知道吗,我们学的英文字母,许多也是轴对称图形呢!你能找出这些字母中的轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,如果不确定,可以拿出相应的字母折一折,完成了跟同桌交流,全班交流)

  (3)完成想想做做5,实物投影出示图形

  师:轴对称图形真是随处可见,你们看,这些是什么?对,国旗是一个国家的象征。观察下面的国旗,你能找出哪些国家的国旗是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,完成了小组长组织大家讨论,全班交流)

  (4)完成想想做做,实物投影出示图形

  师:我们认识了那么多的轴对称图形,你能自己画出一个轴对称图形吗?

  请小朋友画出下面每一个图形的另一半,使它成为一个轴对称图形!画的时候要动脑筋想一想,怎样画又快又好!

  (独立练习,全班交流)

  三、做一做——内化新知

  师:刚才我们看了、找了、画了轴对称图形,现在,让我们来做一个轴对称图形好吗?你可以用老师提供给你们的工具做,也可以自己想法做,比一比,哪一组的方法多,做出的图形美!

  (小组活动,完成后,请一组到实物投影上展示,相机点评)

  设计意图:放手让学生自己“做”轴对称图形,让学生展示自己的“作品”,不但可以让学生共享彼此的经验,而且可以使学生进一步积累感性认识,丰富学生对轴对称图形的体验。

  四、看一看——拓展延伸

  师:轴对称图形以其特有的对称美,给人们带来了一种和谐的美感,蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由的飞翔;我们的服装因为对称显得大方、典雅;古今中外,有许多著名的建筑也是对称的,让我们来看一看这些对称的建筑,感受它们的奇妙和美丽!

  (多媒体播放)

  师:生活中的对称现象还有很多很多,如果有兴趣,电脑课时,可以上网查阅。

  设计意图:数学因为其与生活的密切的联系,才能体现其生活的价值。让学生了解自然界、生活中的对称现象,可以进一步拓宽学生的知识视野,帮助学生体会“对称”的科学与美学价值!

  五、说一说——总结评价

  师:今天,我们学习了轴对称图形,你有什么收获吗?

  六、作业

  1、完成想想做做4、6

  2、收集一些轴对称图形的图片,最好是同一系列的,如:都是建筑的,或者都是交通标志的,在同学之间交流。

  《中心对称图形》教案 10

  一、教学目标

  (一)知识与技能

  会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。

  (二)过程与方法

  通过观察、操作等活动,能在方格纸上补全一个轴对称图形。

  (三)情感态度和价值观

  让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。

  二、教学重难点

  教学重点:掌握画图的方法和步骤。

  教学难点:能在方格纸上画出轴对称图形的另一半。

  三、教学准备

  方格纸、课件。

  四、教学过程

  (一)复习导入

  教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?

  预设:对应点到对称轴的距离相等。

  (二)探索新知

  1.画出轴对称图形。

  教师:根据对称轴,补全下面的轴对称图形。

  教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?

  (小组讨论,全班交流)

  预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。

  教师:很好,怎样来找点呢,所有的点都找吗?

  预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。

  教师:谁能来展示一下你画出的轴对称图形的另一半?

  学生展示自己的作品。

  2.探究结果汇报。

  教师:同学们,今天我们学习了哪些知识?

  预设:在方格纸上画出轴对称图形的.另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。

  教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?

  学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。

  设计意图

  引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。

  《中心对称图形》教案 11

  【教材分析】

  日常生活和自然界中具有轴对称性质的图形很多。教材通过蝴蝶、树叶、脸谱等实物图让学生观察、分析它们共同的特征,再做剪纸实验,然后揭示轴对称图形并画出对称轴,使学生进一步加深对轴对称图形的认识。教材中安排了一些实际操作内容,使学生在实践活动中认识图形的特征,理解有关概念的含义。

  【学情分析】

  学生已认识了一些基本图形特征。学生学习这些知识,一方面可以加深对一些已学过的图形特征的认识,另一方面,可以认识自然界和日常生活具有轴对称性质的一些事物,并为以后进一步学习数学研究一些问题的基本性质打下基础。

  【设计思路】

  首先用"猜一猜我是谁"导入调动学生的学习兴趣,然后通过观察图片归纳出轴对称图形的特点、概念、性质,再通过动手剪纸理解、感受轴对称图形,然后展示作品并交流,最后通过练习加深巩固。

  【教学目标】

  1.通过观察、操作等活动,认识并理解轴对称图形的特点,能准确判断出哪些图形是轴对称图形,并能找出对称轴。

  2.通过各种实践活动,培养学生的观察能力,动手操作能力和创新思维能力。

  3.在探究新知的活动中,培养审美意识,激发学生学数学、爱数学的情感。

  【教学重点】认识并理解轴对称图形的特点,能准确判断哪些图形是轴对称图形。

  【教学难点】找出轴对称图形的对称轴。

  【教学准备】多媒体课件、彩色纸、剪纸图形、剪刀、尺子等。

  【教学过程】

  一、创设情境,激发兴趣

  师:今天老师给大家带来了一个问题:猜一猜我是谁,你们想不想挑战?

  生:……

  师:看大屏幕,谁知道这是什么?(PPT出示衣服的一半)

  生:……

  师:是完整的一件衣服吗?

  生:……

  师:你能在脑子里想一想,它的另一半是什么样子的?想到的请举手,看一看跟不跟你们想的一样是一样的吗?

  生:……

  师:祝贺你们,说明你们很会想象,这在我们生活中是很重要的。

  依次展示4幅图片,让学生猜,并引导学生在想图形的另一半时不仅要注意形状一样,还得注意图形的大小、方向

  师:老师给大家猜了4幅图形,同学们猜的很好,生活中有很多这样的图形,现在我们就从这4个图形开始这节课。(板书:图形)

  设计意图:用"猜一猜我是谁"导入能调动学生的学习兴趣,营造出课堂活跃的气氛,又渗透了轴对称图形的内容,为新课的学习做铺垫。

  二、主动参与,探索新知

  (一)直观感受轴对称图形

  1.认识轴对称图形的特点

  师:这些图形有什么特点?(出示图片)

  预设:

  生:这些图形都是对称图形。

  师:这个名称同学们在美术课上认识过,那么什么是对称呢?并且在我们数学中这个名称还不完整。

  预设:

  生:图形的两边是一样的。

  师:我们一起来看一下,衣服是左右两侧一样、蝴蝶是左右两侧一样、叶子是左右两侧一样、脸谱也是左右两侧一样,那飞机是?

  预设:

  生:飞机是上下两侧一样。

  师:是的,有些图形是左右两侧一样,而有些是上下两侧一样,那有没有图形是斜着两侧一样?

  师:这个问题留到后面解决。

  设计意图:在教师的逐步引导下得出,有些图形是左右两侧一样,而有些是上下两侧一样,也有一些是斜着两边一样。

  2.归纳总结轴对称图形、对称轴的概念

  师:想一想,如果我们将衣服的左右两侧对折后将会会怎样?

  板书:对折

  预设:

  生:衣服的`两边合在一起了。

  师:对折后像这样,两边没有多出的部分也没有少了的部分,在数学中我们把它叫做完全重合。(用剪好的衣服图形边折边说)

  板书:完全重合

  师:请你们在仔细看看,对折后这个图形上多了什么?

  预设:

  生:多了一条线。

  师:是的,多出了一条折痕。

  师:那么像这样沿着一条直线对折后,图形的两侧完全重合的图形我们就把它叫做轴对称图形。(PPT出示轴对称图形)

  补充板书:轴对称图形

  沿着一条直线对折后,图形的两侧完全重合

  而这条折痕所在的直线在数学中我们把它叫做对称轴(PPT展示对称轴),在画对称轴的时候我们画的是虚线(将衣服贴在黑板上并用尺子画出对称轴,并板书:对称轴)

  设计意图:用衣服图形边折边说,帮助学生理解完全重合的含义。学生通过观察直观感知轴对称图形的特点,并理解轴对称图形的概念.

  3.跟我学剪纸

  师:生活中还有很多这样的图形,而这些图形都是可以剪出来的,现在请你们看课本29页的例1"剪一剪",然后说一说在剪轴对称图形的时候先做什么,再做什么?

  (学生自学课本29页剪对称图形方法)

  生:先将纸对折,然后画出图形的一半再沿着线剪,展开就是一个轴对称图形。

  (PPT出示剪纸的方法)

  设计意图:通过自学剪轴对称图形的方法使学生深刻理解轴对称图形,并为接下来的自由创造打下基础。

  4.学生自由创作(小小剪刀手)

  (1)自由创作轴对称图形

  师:那么你们想不想创作一个自己喜欢的轴对称图形?

  生:……

  师:不着急动手,在剪之前请你先听好要求。(PPT出示要求教师讲解)

  师:听清楚要求的请坐端正。

  (老师说开始后学生开始自由创作轴对称图形)

  (2)判断剪出来的图形是不是轴对称图形

  师:有很多同学已经剪出来了,还有一些同学可能要剪的图形太漂亮了所以慢了些,没关系我们先停下来。接下来我们3、2、1调整一下坐姿,3请你放下剪刀,2请你坐端正,1请你抬头。3、2、1表扬……..

  师:刚刚老师收集了很多同学们的作品,但是我有一个疑问谁能帮帮我:怎样判断这些图形是不是轴对称图形?

  预设:

  生:对折后,看一看图形的两侧是不是完全重合

  师:是个好办法,我们来试一试

  (在黑板上选几个作品判断,强调"对折后,图形两侧完全重合")

  设计意图:通过"小小剪刀手"活动,深刻理解和感知轴对称图形的性质;并通过动手折一折学会判断轴对称图形方法并学会找画对称轴。

  (二)深化探索

  师:接着我们一起来看一组图形,请判断他们是不是轴对称图形,如果是请你画出它的对称轴。(PPT出示:课本P33练习七第1题)

  (依次判断图形是不是轴对称,如果是找对称轴,重点讲解五角星,引出一个轴对称图形可能不只有一条对称轴,有些对称轴是横的、有些是竖的,有些是斜的。)

  设计意图:通过判断轴对称图形和画对称轴引出一个轴对称图形可能不只有一条对称轴。

  三、综合实践,学以致用

  1.用身体摆轴对称图形

  师:人体的平面图形也是轴对称图形,比如两个耳朵、眼睛等等(教师在讲台上边做动作边说),谁愿意上来试一试用自己的身体摆一出一个轴对称图形。

  (请同学上讲台用自己的身体摆一个轴对称图形其他同学来判断)

  师:谁又来摆一个不是轴对称的图形?

  师:说一说为什么不是轴对称图形

  2.在数字、字母、汉字找轴对称图形

  其实我们学过的数字、字母、汉字有些也是轴对称的,接下来我们一起来完成这个练习。

  (PPT出示练习的题目,判断这些图形是不是轴对称图形,如果是找一找它的对称轴)

  设计意图:通过摆姿势、在数字、字母、汉字中找轴对称图形,巩固加深本节课的内容。通过不同形式的练习,使练习难易有坡度,有层次,真正体现了巩固、运用、加深了学生对知识的记忆。

  四、课堂总结评价

  1.小结

  (1)通过这节课的学习你知道了什么?

  (2)你还想知道什么?

  2.轴对称图形欣赏(数学源于生活)

  师:我们生活中有很多轴对称现象,给我们带来了美的享受,让我们一起来欣赏一下。

  (PPT出示一些日常生活中的轴对称图形)

  师:其实日常生活中的轴对称现象远远不止这些,我们要用发现的眼睛去观察,就会发现生活中处处有轴对称图形,处处有数学。

  设计意图:感受轴对称图形的美,激发学生学数学、爱数学的情感。

  五、课后作业:

  回家去剪一个自己喜欢的对称图形。

【《中心对称图形》教案】相关文章:

《中心对称图形》教案03-29

数学图形教案12-19

《图形王国》教案03-29

《图形的运动》教案03-29

《好玩的图形》教案03-26

《图形的平移》教案03-14

好玩的图形教案03-04

《区分图形》教案02-06

图形宝宝教案02-08

《可爱的图形》教案03-02