当前位置:育文网>教学文档>教案> 小学数学方程教案

小学数学方程教案

时间:2024-12-26 12:41:41 教案

小学数学方程教案

  作为一名人民教师,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?以下是小编精心整理的小学数学方程教案,欢迎大家分享。

小学数学方程教案

小学数学方程教案1

  教学目标

  1.初步学会列方程解比较容易的两步应用题.

  2.知道列方程解应用题的关键是找应用题中相等的数量关系.

  教学重点

  列方程解应用题的方法步骤.

  教学难点

  根据题意分析数量间的相等关系.

  教学过程

  一、复习准备

  (一)口算

  (二)练习(课件演示:列方程解应用题)

  商店原有一些饺子粉,卖出35千克以后,还剩40千克.这个商店原来有饺子粉多少千克?

  1.读题,现解题意.

  2.学生独立解答.

  3.集体订正.

  解法一:35+40=75(千克)

  解法二:设原来有千克饺子粉.

  答:原来有75千克饺子粉.

  (三)教师说明:这种方法(解法二)就是我们今天要学习的列方程解应用题.

  板书课题:列方程解应用题

  二、新授教学

  (一)教学例1(继续演示课件:列方程解应用题)

  例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克.这个商店原来有多少千克饺子粉?

  1.读题,理解题意.

  2.教师提问:通过读题你都知道了什么?

  教师板书:原有的重量-卖出的重量=剩下的重量

  3.教师提问:等号左边表示什么?等号右边表示什么?

  卖出的饺子粉重量直接给了吗?应该怎样表示?

  教师板书:原有的重量-每袋的重量卖出的袋数=剩下的重量

  4.根据等量关系式列出方程并解答.

  教师板书:解:设原来有千克饺子粉.

  答:原来有75千克饺子粉.

  5.小结:列方程解应用题的'关键是什么?

  (二)教学例2(继续演示课件:列方程解应用题)

  例2.小青买4节五号电池,付出8.5元,找回0.1元.每节五号电池的价钱是多少元?

  1.读题,理解题意.

  2.提问:要解答这道题关键是什么?

  3.学生独立解答.

  4.学生汇报解答过程.

  (三)总结列方程解应用题的一般步骤(继续演示课件:列方程解应用题)

  (四)练习

  商店原来有15袋饺子粉,卖出35千克以后,还剩40千克,每袋饺子粉重多少千克?

  三、课堂小结

  今天你学习了哪些知识?列方程解应用题的关键是什么?步骤呢?

  四、课堂练习

  (一)把每个方程补充完整.

  1.小明买4枝铅笔,每枝元,付给营业员3.5元,找回0.3元

  __________________________________=0.3

  2.建筑工地运来5车水泥,每车吨,用去13吨以后还剩7吨.

  __________________________________=7

  (二)列方程解答.

  服装厂有240米花布.做了一批连衣裙,每件用布2.5米,还剩65米.这批连衣裙有多少件?

  五、课后作业

  1.图书小组原来有一些故事书,借给3个班,每班18本,还剩35本.原来有故事书多少本?

  2.四年级做了3种颜色的花,每种25朵,布置教室用去一些以后还剩28朵.布置教室用去多少朵?

  六、板书设计

  列方程解应用题

  例1.商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克.这个商店原来有多少千克饺子粉?

  原有的重量-每袋的重量卖出的袋数=剩下的重量

  千克5千克7袋40千克

  解:设原有千克饺子粉.

小学数学方程教案2

  设计说明

  本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:

  1、在操作实践中验证等式性质(二)。

  在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。

  2、通过直观图理解解方程的过程。

  在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。

  课前准备

  教师准备:

  PPT课件

  学生准备:

  天平,若干个贴有标签的砝码

  教学过程

  猜想导入

  师:谁能说出我们学过的等式性质?

  [学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]

  引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。

  设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。

  动手验证,探究规律

  师:大家的猜想对不对呢?我们来验证一下。

  1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的.砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)

  2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)

  3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)

  4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)

  5、通过上面的游戏,你发现了什么?

  小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。

  解方程

  1、(课件出示教材70页方程:4y=20xx)

  师:你们能求出这个方程的解吗?

  (学生先独立尝试,然后小组交流,并汇报)

  预设

  方法一:想?×4=20xx,直接得出答案。

  方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。

  师:为什么方程的两边都除以4,依据是什么?

  预设

  生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。

  让学生说出用等式性质解方程的过程。

小学数学方程教案3

  教学内容:

  p53--54练习十一1,2,3

  教学目标:

  1. 通过观察天平演示,使学生初步理解方程的意义;

  2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

  3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:

  判断一个式子是不是方程;初步理解方程的意义。

  课前准备:

  课件,习题板

  教学过程:

  一、复习旧知,激趣导入

  同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

  二、出示学习目标

  1、初步理解方程的意义,会判断一个式子是否是方程

  2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

  三、学习过程。

  (一)认识天平

  (二)新课学习

  自学指导(一)。

  自学p53, 分别说一说图1,图2,,显示的信息。

  图1天平两边平衡,一个空杯重100克。

  图2在空杯里加一杯水后天平不平衡了。

  自学指导(二)

  再看图3说说图3 显示的信息。

  天平1杯子和里面的水比200克法码重

  天平2杯子和里面的水比300克法码轻

  自学指导(三)

  请用算式表示图3数量关系。

  天平1、100+x>200

  天平2、100+x<300

  自学指导(四)

  再看图4说说图4 显示的信息,请用算式表示图4数量关系

  100+x=250

  自学指导(五)

  观察比较下列算式说说你的发现

  观察比较

  100+x>200

  100+x<300

  100+x=250

  前面两个算式两边不相等,后面一个算式两边是相等的。

  教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

  课堂练习(一)

  写出几个等式

  自学指导(六)

  请学生把这里的`等式分类,并说说你们是如何分类的?

  20+30=50

  20+χ=100

  50×2=100

  14-8=6

  3y=180

  78× 3=234

  100+2y=3×50

  学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

  教师总结:含有未知数的等式,称为方程。(板书)

  课堂练习(二)

  请大家写出几个方程。

  四、小结:回答什么是方程?

小学数学方程教案4

  教材分析

  1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。

  2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。

  学情分析

  1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。

  2、学生运用新知识解决实际问题的能力存在比较明显的.差异,但不同的学生具有不同的潜力。

  3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。

  教学目标

  1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。

  2、掌握解方程的步骤和书写格式。

  3、提高学生分析问题并用数学知识解决问题的能力。

  4、培养学生进行数学探究的能力及合作意识。

  教学重点和难点

  1、本节课的重点是:根据等式的性质解方程。

  2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。

  教学过程

  一、复习导入:

  1、什么叫方程?什么叫方程的解? 什么叫解方程?

  2、前面,我们学习了两个等式保持不变的规律,等式的不变规律是什么?

  等式这些规律在方程中同样适用吗?

  今天我们就学习如何利用等式保持不变的规律来解方程。

  二、探究新知:

  1、电脑出示课件例1。

  2、从图中可以获取哪些信息?图中表示了什么样的等量关系?

  要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?

  3、探究怎样解方程。

  利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?

  (让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)

  4、知识迁移。

  把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?

  (方程两边同时减去一个3,左右两边仍然相等。)

  板书+3—3=9—3

  x=6

  5、追问:左右两边同时减去的为什么是3,而不是其它数呢?

  (因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)

  6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)

  8、学生练习:解方程(X+21=32 X+41=50)

  9、学生讨论交流:解X+a=b这类方程的思路是什么?

  10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?

  11、学生尝试解方程:X—3=9

  12、学生讨论交流:解X—a=b这类方程的思路是什么?

  13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)

  三、巩固练习:

  1、填一填(出示课件)。

  使学生进一步加深理解和运用等式不变规律1解决问题实际问题。

  2、书上“做一做”第1题(1)题

  3、巩固尝试:解方程(出示课件)。

  让学生独立完成会用等式不变规律1解方程,强调验算。

  四、课堂总结:

  通过这节课的学习,你都有哪些收获?

  五、拓展活动:

  利用课余时间小组内探究像32—X=10这类方程可以怎样解?

  六、作业设计:

  练习十一第5题一二行,第6题一行。

小学数学方程教案5

  教学内容:

  教材第88---90页

  教学目标:

  1、结合情境,了解方程的意义;

  2、会用方程表示简单的等量关系;

  3、在列方程的过程中,体会方程与现实世界的密切联系。

  教学重难点:

  1、了解方程的意义;

  2、会用方程表示简单情境中的等量关系。

  教学准备:

  情境图、课件、卡片(等式、不等式、方程….)

  教学过程:

  一、课前谈话,设疑导入

  1、为什么学习方程?

  2、方程是什么?

  二、带着问题自主学习,合作交流,建立方程概念

  问题一:为什么学方程?

  (一)出示天平,建立等量概念:

  左边=右边

  (二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)

  1、小组合作,看图找出等量关系,用式子表示出来

  2、小组汇报,并将式子板书在黑板上

  小结:刚刚我们每一小组用式子表达情境问题中的等量关系,说说我们用的式子和以前用的式子有什么相同、不同之处?

  问题二:什么是方程?

  根据小结板书:含有未知数的'等式叫方程。

  1、读一读:

  师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。

  2、圈一圈:

  师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。

  3、写一写:

  师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)

  4、试一试:

  含有未知数的式子就是方程吗?举个例子。

  等式一定是方程吗?举例。

  5、游戏巩固:听口令做动作

  游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式

  游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。

  三、课堂小结:

  1、这节课你有什么收获?

  2、第89页练一练第1、2题。

  四、布置作业

小学数学方程教案6

  教学内容

  列方程解应用题

  教学目标

  1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。

  2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

  3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

  教学重点

  列方程解答数量关系稍复杂的两、三步应用题。

  教学难点

  形如:ax+bx=c的数量关系

  教学理念

  培养学生自主探究、合作交流的`学习方式。提高学生的检验能力。

  教师活动过程

  学生活动过程 备注

  一、复习铺垫

  1练习二十一T1

  学生回答

  2根据条件说出数量关系式:

  果园里的桃树和梨树一共有168棵。

  果园里的桃树比梨数多84棵。

  桃树棵数是梨树的3倍。

  学生回答数量关系式

  3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!

  学生自主编题,口头说题

  4依据学生回答,教师出示题目。

  A.根据条件(1)、(2)编题:果园里梨树和桃树一共有168棵,桃树比梨树多84棵。梨树和桃树各有多少棵?

  B.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)

  C.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)

  教师巡视,了解情况。

  二.探究新知

  1.学生尝试例1

  引导学生画出线段图

  集中反馈:生说师画图

  2.教师组织学生汇报

  学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。

  学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。

  3.小组讨论。

  解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?

  用方程解,设哪个数量为X比较合适?用什么数量关系式来列式呢?

  4.学生独立完成想一想。

  这一题与例1有什么相同的地方?有什么不同的地方?

  明确三点:1、一般设一倍数为X 。2、把几倍数用含有X的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。

  5完成课本94页练一练

  指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?

  三、小结

  本课学习了什么内容?你有哪些收获?

  四、作业

小学数学方程教案7

  一、设计理念:

  随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。

  二、教学目标:

  知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。

  过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的.快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。

  三、教学重、难点:

  教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。

  教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。

  四、教学方法:“勾漏”双向四步教学法;观察法、比较法、归纳法。

  五、教学准备:教学课件

  六、教学过程

  (一)、勾人入境:

  同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?

  (二)、漏知互学:

  我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程

  先来看第一大块的加法方程

  186+x=200

  用等式的性质这样解:

  186+x=200

  解:x+186—186=200—186

  X=14

  熟练后可以这样解:

  186+x=200

  解:x=200—186

  X=14

  有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?

  现在我们再看第二大块的乘法方程

  36×x=108

  用等式的性质这样解:

  36×x=108

  解:X×36÷36=108÷36

  X=3

  熟练后可以这样解:

  36×x=108

  解:X=108÷36

  X=3

  师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?

  现在我们再来看第三大块,减法方程:

  X—36=12

  用等式的性质这样解:

  X—36=12

  解:X—36+36=12+36

  X=48

  熟练后可以这样解:

  X—36=12

  解:X=12+36

  X=48

  那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:

  108—X=60

  用等式的性质可以这样解:

  108—X=60

  解:108—X+X=60+X

  108 =60+X

  60+X =108

  X+60-60 =108-60

  X=48

  熟练后可以这样解:

  108—X=60

  解:X=108—60

  X=48

  同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。

  接下来我们再来学习第四块,除法方程:

  X÷12=5

  用等式的性质可以这样解:

  X÷12=5

  解:X÷12×12=5×12

  X=60

  熟练后可以这样解:

  X÷12=5

  解:X=5×12

  X=60

  同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,1、未知数X在除号前面,2、都用乘法,3、数字没有相反。怎么办,对,先算完另外一种情况(X在除号后的)再说,那么请开始吧。

  48÷X=3

  用等式的性质可以这样解:熟练后可以这样解:

  48÷X=3 48÷X=3

  解:48÷X×X=3×X解:X=48÷3

  48=3×X X=16

  3×X=48

  X=48÷3

  X=16

  仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数X在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据X在除号前后来判断,X在除号前用乘法,X在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。

  (三)、流程对测:

  小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。

  小组开始探究,教师巡逻指导

  (四)、结课拓展:请同学们说说这节课你学到了什么?

小学数学方程教案8

  设计说明

  这部分内容是在学生学习了简易方程的基础上,复习解方程的过程及用方程解决实际问题。

  1.关注学生的整体发展。

  本节课结合复习题,引导学生对方程的知识进行整理和复习,深化了学生对列方程解应用题这类题型的理解,促进了学生原有认知结构的优化。不仅实现了知识的巩固,还培养了学生的应用意识和解决实际问题的能力。

  2.注重知识间的内在联系。

  加强知识间的内在联系,帮助学生构建合理的知识体系,进一步明确用方程解决问题的解题思路,掌握寻找题中等量关系的方法。培养学生用方程解决问题的能力,并能由基本题型拓展开,解决类似的问题,培养学生灵活运用知识的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙导入,全面回顾

  1.同学们,我们已经学过了用方程解决问题这部分知识,这节课我们就对这一部分知识进行整理和复习。

  2.课件出示学习要求。

  (1)关于用方程解决问题,你学习了哪些内容?

  (2)你认为哪些内容比较难,容易出错?

  (3)你还有什么问题?

  3.小组进行汇报,全班交流,互相评价。

  4.回顾用方程解决问题的关键和步骤。

  (1)说一说,用方程解决问题的关键是什么?

  (用方程解决问题的关键是找到等量关系式)

  (2)说一说,用方程解决问题的步骤是什么?

  ①理解题意,找到等量关系式。

  ②找出题中的未知量,设为x,根据等量关系式列出方程。

  ③解方程。

  ④检验。

  ⑤写答语。

  设计意图:通过谈话质疑,引入复习内容,通过学习纲要,明确学习目标。

  ⊙复习,分项整理

  1.复习“和倍”“和差”类型题的解法。

  (1)课件出示相关练习题,组织学生独立解答后,交流解题过程。

  小明和妈妈一起集邮,妈妈的邮票数是小明的6倍,妈妈比小明多100张邮票,妈妈和小明各有多少张邮票?

  学生独立解答后汇报解题步骤。

  ①画线段图理解题意。

  ②找出题中的等量关系式。

  妈妈的邮票数-小明的邮票数=100

  小明的邮票数+100=妈妈的邮票数

  妈妈的邮票数-100=小明的邮票数

  ③列式解答。

  解:设小明有x张邮票,则妈妈有6x张邮票。

  6x-x=100

  5x=100

  x=100÷5

  x=20

  6x=20×6=120

  答:小明有20张邮票,妈妈有120张邮票。

  (2)引导学生小结:在列方程的过程中,有两个未知数时,需要确定一个未知数为x,再根据两个未知数之间的'关系,用含有x的式子表示另一个未知数,再根据题中的等量关系式列出方程。

  3.复习“相遇问题”中的方程的解题方法。

  课件出示复习题:甲、乙两车同时从A、B两地相向而行,已知甲车每时行驶75千米,乙车每时行驶85千米。已知A、B两地相距960千米,求甲、乙两车几时后相遇。

  (1)引导学生找出题中的已知条件和所求问题。

  (2)找出题中的等量关系式。

  ①甲车行驶的路程+乙车行驶的路程=A、B两地的总路程

  ②(甲车和乙车的速度和×相遇时间)=A、B两地的总路程

  ③A、B两地的总路程÷甲、乙两车的速度和=相遇时间

小学数学方程教案9

  知识网络

  列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

  一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

  设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

  重点难点

  列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

  学法指导

  (1)列方程解应用题的一般步骤是:

  1)弄清题意,找出已知条件和所求问题;

  2)依题意确定等量关系,设未知数x;

  3)根据等量关系列出方程;

  4)解方程;

  5)检验,写出答案。

  (2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

  (3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。

  经典例题

  例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

  思路剖析

  如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答

  设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

  答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

  例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解 答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草头数天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草头数天数-新生长的草

  新生长的草=草的.生长速度天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草1020-草的生长速度20

  原有的草=每头牛每天吃的草1510-草的生长速度10

  所以:原有的草=每头牛每天吃的草200-草的生长速度20

  原有的草=每头牛每天吃的草150-草的生长速度10

  即:每头牛每天吃的草200-草的生长速度20

  =每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200-每头牛每天吃的草150

  =草的生长速度20-草的生长速度10

  每头牛每天吃的草(200-150)=草的生长速度(20-10)

  所以:每头牛每天吃的草50=草的生长速度10

  每头牛每天吃的草5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草25x-草的生长速度x

  原有的草=每头牛每天吃的草1020-草的生长速度20

  有:每头牛每天吃的草25x-草的生长速度x

  =每头牛每天吃的草1020-草的生长速度20

  所以:125x-5x=11020-520

  解这个方程

  25x-5x=1020-520

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

  例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

  解 答

  设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  解法一:用直接设元法。

  80x-40=(30x+40)2

  80x-40=60x+80

  20x=120

  x=6(座)

  解法二:用间接设元法。

  设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)30=(2x+40)80

  (x-40)80=(2x+40)30

  80x-3200=60x+1200

  20x=4400

  x=220(米3)

  由灰砖有220米3,推知修建住宅(220-40)30=6(座)。

  同理,也可设有红砖x米3。留给同学们练习。

  答:计划修建住宅6座。

  例4 两个数的和是100,差是8,求这两个数。

  思路剖析

  这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

  解 答

  解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:

  x+8+x=100

  解这个方程:2x=100-8

  所以 x=46

  所以 较大的数是 46+8=54

  也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:

  100-x-x=8

  所以 x=46

  所以 较大的数为100-46=54

  答:这两个数是46与54。

小学数学方程教案10

  教学目标:使学生会列方程解答文字题。

  使学生初步感受用方程解题的优越性。

  重点难点:使学生掌握列方程解文字题的的一般方法。

  教学过程:

  一、准备引入。

  用含有字母的式子表示下面的数量关系。

  1、x的3倍加1.6的和。

  2、12减x的.6倍的差。

  二、新课教学。

  1、出示例7列出方程,并求出方程的解。

  12减一个数的6倍,差是5.4,求这个数。

  2、分析讲解:

  (1)先设未知数,一般用x表示;

  (2)再根据题中表述的相等关系列出方程;

  (3)求方程的解;

  (4)检验方程。

  解:设这个数是x。

  12—6x=5.4

  6x=12—5.4

  6x=6.6

  x=1.1

  3、做试一试。要一个学生到黑板上去做,其余的做在纸上。

  一个数的5倍减14与3的积,差是23。

  解:设一个数为x。

  5x—14×3=23

  5x—42=23

  5x=23+42

  5x=65

  x=65÷5

  X=13

  三、巩固练习。

  见书本练一练。

  四、总结。

  五、布置作业

  作业本p:60第(6)。

小学数学方程教案11

  教学目标:

  1.使学生进一步掌握解一元一次方程的移项规律。

  2.掌握带有括号的一元一次方程的解法;

  3.培养学生观察、分析、转化的'能力,同时提高他们的运算能力.

  教学重点:

  带有括号的一元一次方程的解法.

  教学难点:

  解一元一次方程的移项规律.

  教学手段:

  引导——活动——讨论

  教学方法:

  启发式教学

  教学过程

  (一)、情境创设:

  知识复习

  (二)引导探究:带括号的方程的解法。

  例1.2(x-2)-3(4x-1)=9(1-x).

  解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)

  去括号,得:

  移项,得:

  合并同类项,得:

  系数化1,得:

  遇有带括号的一元一次方程的解法步骤:

  (三)练习:(A)组

  1.下列方程的解法对不对?若不对怎样改正?

  解方程2(x+3)-5(1-x)=3(x-1)

  解:2x+3-5-5x=3x-1,

  2x-5x-3x=3+5-3,

  -6x=-1,

  2.解方程:

  (1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.

  3.解方程:

  (1)3(y+4)12;(2)2-(1-z)=-2;

  (B)组

  (1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);

  (3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

  (四)教学小结

  本节课都教学哪些内容?

  哪些思想方法?

  应注意什么?

小学数学方程教案12

  设计说明

  本节课针对方程的整理和复习分两个层次展开。第一个层次:复习用字母表示数的作用,使学生可以简明地表达数量关系,旨在举一反三,启发学生想到更多的实例。引导学生经历回顾和整理与方程有关知识的过程。会解决简单问题,感受方程在解决问题中的价值,培养初步的代数思想。第二个层次:请学生列方程并求出方程的解,目的是引导学生把有关方程的知识进行整理,对方程的概念、方程与等式的关系、什么叫解方程、解方程的依据(即等式的.性质)、在解决问题时如何找等量关系、如何根据等量关系列出方程等知识进行回顾。帮助学生巩固基础,熟练掌握列方程解决实际问题的方法,同时进一步体会用方程解决问题的优越性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙独立思考,构建知识网络

  1.学习构建知识网络。

  (1)归纳整理。

  师:本学期我们学习了哪些有关方程的知识?请同学们先自行整理,再在组内交流。

  (学生回忆整理,小组讨论交流,教师巡视指导)

  (2)构建知识网络。

  师:怎样展示相关的知识才能一目了然呢?现在,就让我们一起来完成知识网络的构建。

  (引导学生有序地回顾已学的有关方程的知识,结合学生的回答,课件出示建立知识网络的过程)

  设计意图:通过引导学生回顾、整理所学知识,使学生对所学的方程知识有一个比较系统的了解,并学会如何构建完整的知识网络。

  2.展示构建的知识网络

  方程

  设计意图:对学过的知识进行系统化的梳理,通过展示,使学生明确这一板块所呈现的内容,加深对所学知识的理解和掌握,形成完善的知识体系。

  ⊙复习,分项整理

  1.复习用字母表示数。

  (1)课件出示教材96页6、7题。

  请学生先独立解决问题,然后说一说用字母表示数的方法。

  小结:

  ①当数字与字母相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如4×a可以写作4·a或4a。

  ②当字母与字母相乘时,可以用点表示乘号或直接去掉乘号,如a×b可以写作a·b或ab;a×a可以写作a·a或a2。

  ③当字母与1相乘时,1可以省略不写,只写字母本身,如1×a可以写作a。

  (2)填一填。

  ①小明的身高是138厘米,比哥哥矮a厘米,哥哥的身高是( )厘米。

  ②一个正方形的边长是a米,它的周长是( )米,面积是( )平方米。

  ③一堆煤有a吨(a>5b),每车运b吨,运了5车后,还剩( )吨。

  ④在自然数中,与自然数a相邻的两个数是( )和( ),它们三个数的和是( )。(a>1)

  指名回答,集体订正。

  (3)判断。

  ①a×b×8可以简写成ab8。( )

  ②a2和2a相等。( )

  ③a÷b中,a、b可以是任何数。( )

  设计意图:让学生回顾用字母表示数的意义,体会代数思想,巩固一些特殊的写法:数与字母之间的乘号可以省略不写,数要写在字母的前面等。

小学数学方程教案13

  【教学内容】 教材P135~136页复习第16~23题。

  【教学目标】

  1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

  2、进一步理解方程的意义,会解简易方程。

  3、会列方程解应用题。

  【教学重点】

  用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。

  【教学过程】

  一、揭示课题

  今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

  二、复习用字母表示数量关系,公式,运算定律

  1、 出示表:用字母表示运算定律。

  名称 用字母表示

  加法交换律 a+b=b+a

  加法结合律 (a+b)+c=a+(b+c)

  乘法交换律 ab=ba

  乘法结合律 (ab)c=a(bc)

  乘法分配律 (a+b)c=ac+bc

  2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

  3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

  4、练习:期末复习第16题。

  5、求含有字母式子的值。做期末复习第17题。

  (1)原来每月烧的煤用30c表示;现在每月烧的煤用30(x-15)表示。

  (2)学生计算现在每月烧煤的`千克数。

  三、复习方程的意义和解方程

  1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

  2、练习:做期末复习第18题。

  学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

  3、做期末复习第19题。

  请学生说一说解方程的方法。

  4、做期末复习第20题。

  学生列方程并解方程。

  四、复习列方程解应用题

  1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

  (2)请学生说一说列方程解应用题的一般步骤。

  2、做期末复习第2123题。

  第21题:

  学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

  第22题:

  师画线段图表示题目的条件和问题,学生列方程解答。

  第23题:

  学生说数量关系式、列方程解答。

  五、全课总结

  这节课复习了什么内容。

  六、布置作业

  补充

  1、(1)某商店上午卖出3台微波炉,下午卖出6台微波炉,每台。元,上午比下午少卖( )元。

  (2)四(3)班有x人,每人7本练习本;四(2)班有48人,每人有y本练习本。(x48)

  7x表示( )。

  48y表示( )。

  48-x表示( )。

  7x+48y表示( )。

  2、解方程:

  80-4x=68 45+x=30

  46-13-x=10 20x-28=52

  x-(30+8)=11 4x3=60

  3、列出方程,并求出方程的解。

  (1)从80里减去3x得11,求x。

  (2)60比一个数的5倍多5,求这个数。

  4、列方程解应用题。

  (1)一个三角形面积是6000平方米,底是400米,求高。

  (2)甲乙两地相距320千米,一辆汽车从甲地开往乙地,平均每小时行70千米,若干小时后,这辆汽车不仅到达乙地,还超过乙地30千米,汽车已行了几小时?

  (2) 一捆电线长155米,装了38盏电灯还剩3米,平均每盏灯用线多少米?

小学数学方程教案14

  教学目标:

  1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

  2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

  3.培养学生利用恰当的方法解决实际问题的能力。

  教学重点:

  通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

  教学难点:

  通过复习,使学生能够准确的找出题目中的等量关系.

  教学过程:

  一、复习准备.(P107)

  1.找出下列应用题的等量关系.

  ①男生人数是女生人数的2倍.

  ②梨树比苹果树的3倍少15棵.

  ③做8件大人衣服和10件儿童衣服共用布31.2米.

  ④把两根同样的铁丝分别围成长方形和正方形.

  ( 学生回答后教师点评小结)

  我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

  二、新授内容

  1、教学例3、

  (1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

  ①.读题,学生试做.

  ②.学生汇报(可能情况)

  (90+75)×4

  提问:90+75求得是什么问题?再乘4求的是什么?

  90×4+75×4

  提问:90×4与75×4分别表示的是什么问题?

  (由学生计算出甲乙两站的铁路长多少千米。)

  (2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

  (先用算术方法解,再用方程解)

  ①、660÷(90+75)=?

  ②方程

  解: 设经过x小时相遇,

  (90+75)×x =660 或者, 90×x +75×x =660

  让学生说出等量关系和解题的思路

  教师小结(略)

  (3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

  ( 先用算术方法解,再用方程解)

  ①、(660—90×4)÷4=?

  ②、方程

  解:设货车每小时行x千米

  90×4+ 4x = 660 或者(90 + x )×4 = 660

  让学生说出等量关系和解题的思路

  教师小结(略)

  让学生比较上面三道应用题,它们有什么联系和区别?

  比较用方程解和用算术方法解,有什么不同?

  教师提问:这两道题有什么联系?有什么区别?

  三、巩固反馈.(P109---1题)

  1.根据题意把方程补充完整.

  (1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.

  _____________=53

  _____________=116

  (2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

  _____________=139.5

  _____________=9.6×3

  (3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的`21%,下午用同样的工效工作1小时,架设了280米.

  _____________=280×3

  2.(P110----4题)解应用题.

  东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

  小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

  3.思考题.

  甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

  四、课堂总结.

  通过今天的复习,你有什么收获?

  五、课后作业.

  (P110---5题)不抄题,只写题号。

  板书设计:

  列方程解应用题

  等量关系 具体问题具体分析

  例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千

小学数学方程教案15

  教学目标:

  1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

  2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

  4、培养学生规范书写和自觉检验的好习惯。

  教学重点:

  1、 对等式的基本性质一的理解和运用。

  2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学难点:

  1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

  2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

  教学过程:

  教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

  后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

  在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

  这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

  教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

  最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

  模式方法:观察――实验――讨论――交流――概括结论

  作业设计:自主练习1-3题。

  讨论要点

  1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

  2、 教学时,要关注学生的'算术思维向方程思维的转变。

  3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

  4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

  活动总结

  本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

【小学数学方程教案】相关文章:

小学数学方程说课稿10-25

小学方程的教案11-29

小学数学《方程》教学反思05-15

《方程》小学数学说课稿10-29

方程小学数学说课稿07-14

小学数学《方程的意义》教学反思10-08

小学六年级数学教案:方程的意义和解简易方程06-06

《方程》教案08-14

《方程的意义》教案10-07