【精华】数学说课稿模板集锦7篇
作为一位优秀的人民教师,就难以避免地要准备说课稿,是说课取得成功的前提。那么优秀的说课稿是什么样的呢?以下是小编帮大家整理的数学说课稿7篇,希望对大家有所帮助。

数学说课稿 篇1
一、说教材
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
二、说教学目标
(知识与技能)
1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答
(情感态度与价值观)
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
三、说教学重、难点
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题
(教学难点)确定解题策略,比较估算与精确计算
四、说教法
教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
教法设计意图
1.回顾练习
内容:
用适当的方法解方程组
(2)既是方程的解,又是方程的解是()
A.B.C.D.设计意图:巩固二元一次方程组的解法
2.自主探究
出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?
为了解决这个问题,请认真看P.105页的内容.
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.
(2)根据问题中给定的'数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
设计意图:引导学生独立思考,培养自主学习的能力
3.小组交流
组内成员讨论各自的探究成果,对不足和错误进行补充与更正
最终提炼出最佳方法.
设计意图:培养合作学习的习惯
4.成果展示
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.
设计意图:培养分析与解决问题能力
5.疑难点拨
(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组
(2)方法的多样——2种解法
设计意图:突破难点,打开思考路线,指导规范解题
6.课堂运用
实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.
捐款(元)
5
10
20
50
人数
6
7
设计意图:巩固解决实际问题的方法与步骤
7.小结发言
谈出本节课的收获与困惑
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.
五、说作业安排
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)
设计意图:从不同层次有效的提高学生对知识的掌握程度
数学说课稿 篇2
我从事初中的数学教学工作五年啦,很想把自己的教学实践中的一些做法,和老师们一起分享,以期得到老师的指导。我校选用的是北师大版数学教材,今天我把我的北师大版数学说课稿《立方根》拿来分享。
一、说教材:
求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:
(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。
(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。
二、说目标
1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号 表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。
2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的`对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。
三、说教学设想
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。
在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的唯一性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。
本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。
数学说课稿 篇3
各位评委、老师:大家好!
我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。
下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。
一、教材分析
教材的地位和作用
本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。
2、教学目标
根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:
(1) 知识技能目标:1)会用代入法解二元一次方程组
2)初步体会解二元一次方程组的基本思想----消元
(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。
(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
3、重点、难点
根据学生的认知特点,我确立了本节课的重难点。
重点:用代入消元法解二元一次方程组
难点:探索如何用代入法将“二元”转化为“一元”的消元过程。
为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。
成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:
二、教学方法
我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。
三、学法指导
我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学设计
1、根据以上分析,我设计了以下六个教学环节:
2、教学过程
下面我就每一个教学环节,具体介绍我对本节课的教学设想。
环节一:创设情境
活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?
学生活动:列方程或方程组解决问题
教师关注:学生是否能够多角度地考虑问题.
设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。
环节二、尝试发现
活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?
学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。
教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。
设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。
活动三:小组展示
学生活动:分小组针对老师给出的题目,展示解二元一次方程组的`方法。
教师关注:关注:学生用语言表达自己的观点的准确性与全面性。
设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。
活动四:再看转化、把握解题技巧
学生活动:观察转化过程中的技巧,并尝试总结。
设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。
环节三、 小组闯关
活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。
学生活动:做练习题
教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误
设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。
活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。
学生活动:独立完成本题。
设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。
环节四、拓展升华
活动七:出示例题2.
学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。
教师关注:学生是否可以找到等量关系,列出方程组,解方程组。
设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。
环节五: 反思小结
活动八:我有哪些收获?
学生活动:学生归纳总结
教师关注:(1)学生是否养成归纳、整理、总结的好习惯;
(2)评价学生是否全面理解并掌握了本节课的知识。
环节六、布置作业
1、必做题:
P103 第2题 ⑵ ⑷, 第4题
2、 选做题:
设计意图:分层次,选择作业题,有利于学有余力的学生的发展。
最后我以著名数学家笛卡尔的一句话结束这节课。
五、板书设计
8.2二元一次方程组的解法
----代入消元法
1、二元一次方程组 一元一次方程
2、代入消元法的一般步骤:
3、思想方法:转化思想、消元思想、方程(组)思想.
六、教学感想
在教学过程中,我始终:
坚持一个原则——教为主导,学为主体
坚守一个理念——先学后教,以学定教
贯穿一个思想——享受数学,快乐学习
以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!
我的说课到此结束,谢谢大家!
数学说课稿 篇4
一、教材分析
《方程》是在学生已经学过用字母表示数的基础上展开的,为下面等式的性质和解方程的教学作铺垫,有着承前启后的重要作用。同时,方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。
二、学情分析
1、小学生的心理特点:小学生年少好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力。
2、学生知识结构:学生已经完成了整数、小数的认识及其四则运算的学习,积累了较多的数量关系的知识,是在学会用字母表示数的基础上学习方程知识的。
三、教学目标分析
根据新课程标准的要求、教材编写意图、五年级学生的认知规律和已有知识结构,制定如下教学目标:
知识目标:理解方程的含义,初步体会等式与方程的关系。
能力目标:通过将现实问题抽象成等式与方程的过程,培养学生“从具体到抽象” 、“从特殊到一般”的归纳概括能力。
情感目标:创设问题情境,激发学生观察、分析、探求的学习激情,强化学生参与意识及主体作用。
四、重难点分析
方程作为一种重要的数学思想方法,是学生进一步学习数学和其他学科的重要基础。因此,本节课的重点确定为:理解方程的含义。
小学生的认知水平正处在感性认识的阶段,要透过现象看本质,并上升到理论的高度还存在着很大困难,所以将理解等式与方程的关系确定为本节课的教学难点。
五、教法与学法分析
1、学法
叶圣陶先生说过:“教是为了不教”,我们不仅要教给学生知识,更要教会学生如何去学。因此,在学法中,让学生通过“感知交流→观察比较→得出概念→分析概念的探究过程去发现新知,从而达到发展思维,提高能力的目的。
2、教法
建构主义学习理论认为,学习是学生自己进行知识建构的过程。因此,根据教学目标的要求和学生实际,我采用以小组合作观察探究为主,多媒体为辅的教学方式来培养学生自主学习的能力、观察探究的能力以及分析解决问题的能力。
六、教学过程
建构主义理论认为,学生在与学习环境相互作用的过程中,使自身的认知结构在“平衡→不平衡→新的平衡”的循环中得到不断的丰富、提高和发展。在该理论的指导下,我将按创设情境→观察探究→知识运用三个环节来组织教学。
1.创设情境——引入新知。
我首先提供了天平平衡的情境图,通过“用等式表示天平两边物体的质量关系”的活动,引出“50+50=100”的等式,激活学生已经积累的关于等式的感性经验。这样,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2.观察探究——形成概念。
这部分是教学的重点,我采用以下几个步骤突出这个重点。
【感知交流】我提供了四幅天平图,让学生充分感知和交流,用式子表示天平两边物体的质量关系。通过展示图片,调动学生学习积极性,同时培养学生自主学习的能力。
【观察比较】接着,我提出这些式子中“哪些是等式”的问题,引导学生通过进一步的观察和比较,认识到列出的式子中,两个式子是等式,还有两个式子不是等式。而这里的等式与前面的等式不同,它们都含有未知数。通过实验探究活动培养学生的观察能力和语言表达能力,充分体现自主、合作、探究的新课程理念。
【得出概念】通过引导学生主动发现方程的特点,并用自己的'语言充分地表达,从而得出方程的概念,即 “像X+15=150,2X=200这样含有未知数的等式是方程。”培养学生从具体到抽象,从特殊到一般的归纳概括能力。
【分析概念】这部分是教学的难点,为突破这个难点,在得到方程概念的基础上,我及时组织学生讨论“等式和方程有什么关系”,帮助学生感受等式与方程的联系与区别,体会方程就是一种特殊的等式。这样做有助于培养学生抽象思维能力和归纳概括的能力。
3.知识运用。
“试一试”通过列方程表示现实情境中数量间的相等关系,引导学生进一步理解方程的含义,体会方程的思想,并为进一步学习列方程解决实际问题作一些准备。
“练一练”安排了3道题。第一题采用学生抢答的方式,通过判断题中的式子哪些是等式,哪些是方程,引导学生体会等式与方程之间的逻辑联系,加深对方程含义的理解。第二题通过让学生写出一些方程在小组里交流,引导学生将已有的对方程的认识用外显的形式表达出来,促进学生自主地建构方程的模型,内化方程的概念。第三题采用全班交流的方式,根据具体情境中的数量关系列方程,既有利于学生进一步熟悉列方程的思维特点,又有利于学生对方程含义的理解。
4.引导小结
本课的小结采用学生小结的模式,这是让学生学会自己梳理已经学习过的知识,然后我再对学生的小结进行总结。
5.布置作业
为了使所有学生巩固所学知识,我布置了必做题:要求学生每个人写一篇数学日记,即通过这节课的学习,有哪些收获,还有哪些疑问。同时又为学有余力的学生留有自由发展的空间,我布置了探究题。
数学说课稿 篇5
本节课教学的内容是北师大版小学数学一年级下册第55~56页“拔萝卜”——两位数加两位数。我打算从教材分析、学情分析和教学过程三个方面谈谈本节课的一些设想。
一、说教材分析
本节课是在学生掌握整十数加减整十数、两位数加减一位数的基础上进行的。教材中提供小白兔和小黑兔拔萝卜的情境,目的是从中引出两位数加法的数学问题,让学生根据已有的知识经验和生活背景尝试列式计算,并在积极参与数学学习活动中探索交流两位数加两位数的不同的计算方法,充分体现出算法多样化和学生为主体的思想。另外,教材在体现算法多样化的过程中,第一次引出了竖式计算的方法,这是一种重要而又易被学生接受的计算方法,它是学习笔算的开始,也是以后学习多位数笔算加法的基础,引导学生在分析比较中理解并接受这种方法,体现了一定的算法优化思想。
二、说学情分析
学生在此之前已具备了整十数加减整十数、两位数加减一位数(不进位、不退位)的知识基础,而且有部分学生已获得了一些用竖式计算的知识储备,但是他们只会算,而不会说理,因此本节课重点引导学生学会说理。
教学目标:
1、学生在具体的情境中,进一步体会加法的意义,感受数学与生活的密切关系。
2、探索并掌握两位数加两位数(不进位、)的计算方法,并能正确计算。
3、初步经历在具体情境中提出问题和解决问题的过程,培养解决简单实际问题的意识。
教学重点:
用竖式计算两位数加两位数。
教学难点:
理解不同算法的算理。
教学教法:
为了实现教学目标,有效的突出重点,突破难点,在教学时,我采用创设情境,引导探究的教法,学生在自主探索,合作交流,动手操作中亲身经历知识结论的形成过程,发展了学生的思维。从而发挥了学生的主体性,同时渗透了探究问题的方法。
教学准备:
学生准备小棒,计数器,教师准备课件,计数器等。
三、说教学过程
基于以上思路,我设计了以下教学流程:
(一)复习铺垫。
旧知是新知的基础。新知又是旧知的延续。通过复习数的'组成和一些口算,为学生学习两位数加两位数做很好的铺垫。
(二)创设情境,探究新知。
1、创设情境,提出问题。在这一环节中,力图创设一种具体的拔萝卜情境,引导学生在情境中发现数学信息,提出数学问题,从而激发探究的欲望。
2、探索算法,解决问题。通过学生自主探索36+23的计算方法,充分发挥学生的主体性,让学生亲身经历知识结论的形成过程,发展了学生的思维。算法多样化充分关注学生的个性差异,学生在相互交流中提高。
3、优化算法。算法的优化,使学生从比较中选择更简便的方法,当然也着重介绍本课的重点——如何列竖式计算。学生在学会算法的同时,寻找各种方法之间的关系。
(三)巩固应用,拓展新知
这一环节旨在学生能应用所学知识解决简单的实际问题,体现数学与生活的联系。
(四)全课总结
数学说课稿 篇6
各位评委、各位老师:
大家上午好。
今天我们上课的内容是《两角差的余弦公式》。
首先,我们看两个问题:
(1) cos( π —α ) = ?
(2) cos( 2π — α) = ?
大家根据诱导公式很快得出了答案,大家接着思考一个问题,当特殊角π和2π被一般角取代,
(3) cos( α-β ) = ?
大家猜想了多种可能,其中有同学猜想cos(α-β) = cosα-cosβ 那么这些结论是否成立?
我们一起来用计算器验证。
在这里我们做了与单位圆相交的两个角α,β,现在我们来一起模拟计算下大家猜想的几组结论 。首先任意取一组α,β角,模拟计算出 cos(α-β ); cosα-cosβ; sin α- sinβ; co sα-sin β;由结果推翻假设(反证法), 那么c o s ( α-β )到底等于什么呢? 现在我们来借助计算机的强大计算功能 ,由c o s ( α-β )的结果模拟可能的答案。
计算机模拟结论
cos(α–β)=cosαcos β+ sinαsinβ(黑板板书)。
变换不同的α,β角度,结论保持不变。 同学们观察分析该结论的构成,右边与向量夹角的坐标表示一致.
联想向量数量积(黑板板书),用向量法证明:
(1)先假设两向量夹角为θ,α–β在[0,π],α–β=θ此时结论成立,(2)α–β在[π,2π]时两向量夹角θ=2π-(α–β)
此时 cos[2π-(α–β)]=cos(α–β)
(3)α–β在全体实数范围都可以由诱导公式转换到[0,2π] 综合三种情况,cos(α–β)=cosαcos β+ sinαsinβ。得证
经过大家的猜想,计算,证明,我们得出两角差的'余弦公式,有些同学开始产生疑问,我们最开始的两个诱导公式是否出现了错误,都是两角差的余弦,结论似乎不一致,现在我们一起来探讨,揭开谜底。
用两角差的余弦公式证明问题(1)(2)。
带入具体角度,用两角差余弦公式求cos15°= cos(45°— 30°),同学们试着将15°分成(60°-45°)。(分成17°-2°是否可行)
练习:
证明: cos (α +β)= cos α cos β-sin α sin β
思考 : 能否参考两角差的余弦公式进行推导?
我们的新课改提倡“减负”,从数学的角度,减负就是---“加正”,
所以 α +β = α - (- β )
由此cos (α +β)
= cos [α - (- β )]
=cosα cos( -β) +sin α sin(-β)
= cosα cosβ-sin α sin β
对比:
两角和与差的余弦公式:
cos (α –β)= cosα cosβ + sinα sinβ
cos (α +β)= cosα cosβ - sinα sinβ
余 余 异号 正 正
化简求值:
(1) cos105 °cos15 °+ sin105 °sin15 ° =cos90 °=0
(2)cos(θ+20°)cos(θ-40°)+sin(θ+20°)sin(θ-40°) = cos60 =1/2
(3)cos35 °cos10 ° - sin35 °sin10 °=cos45 °
回顾反思:
提出问题
由两个熟悉的诱导公式入手,从特殊到一般,提出问题。
探究问题
假设猜想——反证否定——计算机模拟猜想——证明——肯定结论——灵活应用——公式对照记忆。
下节课需要解决的内容,通过已经证明的两角和余弦的思路,思考两角和差的正弦。
作业布置:
课本131页 第一题 和 第五题。
数学说课稿 篇7
我说课的题目是《概率的意义》,它是人教版九年级上册第二十五章概率初步第一节的内容。下面我从将从背景分析、目标分析、过程分析、教法分析、评价分析五个方面对本节课的设计进行说明。
一、背景分析
1、教材分析:
按照教学内容交叉编排、螺旋上升的方式,本章是在统计的基础上展开对概率的研究的,而本节又是从频率的角度来解释概率,其核心内容是介绍实验概率的意义,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率。本节课的学习,将为后面学习理论概率的意义和用列举法求概率打下基础。因此,我认为概率的正确理解和它在实际中的应用是本次教学的重点。
2、学情分析:
1)、学生初学概率,面对概率意义的描述,他们会感到困惑:概率是什么,是否就是频率?因此辩证理解频率和概率的关系是教学中的一大难点。
2)、由于本节课内容非常贴近生活,因此丰富的问题情境会激发学生浓厚的兴趣,但学生过去的生活经验会对这节课的学习带来障碍,因此正确理解每次试验结果的随机性与大量随机试验结果的规律性是教学中的又一大难点。
二、目标分析
根据背景分析和学生的认知特点,我将本节课的教学目标设置为:
知识技能:
1)理解概率的含义并能通过大量重复试验确定概率。
2)能用概率知识正确理解和解释现实生活中与概率相关的问题。
过程方法:
1)经历用试验的方法获得概率的过程,培养学生的合作交流意识和动手能力。
2)在由“试验形成概率的定义”的过程中培养学生分析问题能力和抽象思维能力。
情感态度与价值观:
1)利用生活素材和数学史上著名例子,激发学生学习数学的热情和兴趣。
2)结合随机试验的随机性和规律性,让学生了解偶然性寓于必然性之中的辩证唯物主义思想。
三、过程分析
为达到上述教学目标,教学中,我设置五个教学环节(见流程图)。
活动1:复习巩固引入新知
活动2:创设情境实验探究
活动3:形成概念深化认识
活动4:变式训练 拓展提高
活动5:小结归纳课堂延伸
下面我重点谈谈整个教学过程:
1、复习巩固 引入新知
多媒体展示图片和问题:下列事件中,哪些是随机事件,哪些是必然发生的,哪些是不可能发生的。通过生动的实物图片和生活情境,一方面突出复习随机事件的判断,另一方面,可引出本节课的中心问题:随机事件发生的可能性有多大呢?如(遇上红灯、生个儿子、天气晴好)。自然地把学生引入到随机事件的概率的探究过程中来。
2、创设情境 实验探究
要研究随机事件的'概率,抛掷硬币的试验既典型又方便,但如果教师简单直叙说要抛掷硬币,难免让学生觉得被老师牵着走,兴趣不大。在这里,我借助于学生具有的课外知识——对世界杯的了解,让学生先看到世界杯的冠军奖杯,自然想到今年德国世界杯足球比赛,再给一幅图,让学生猜想到这是在由抛掷硬币决定哪个队先开球。然后,顺势提问:这种决定方法对比赛双方公平吗?为什么?
这个问题,问到了学生的心坎上,直觉判断:公平。可是,为什么呢?学生暂时答不上来。怎么办?能否用试验来验证?学生颇感怀疑。
无独有偶,历史上有几位著名的数学家都做过这样的试验,我们今天抛掷的结果会与他们一致吗?
第一步:分组试验
将全班分十组,要求每组掷一枚硬币60次,并把试验数据记录在表格中。
分析试验结果:
提问①:各小组正面朝上的频率一样吗?是否为0.5?
提问②:如果把全班十组结果进行累计,正面朝上的频率会有什么规律?
设计意图:
通过提问1:引导学生认识到随机事件的发生具有偶然性。
通过提问2:引导学生发现在次数逐渐增大的情况下,频率数值渐趋稳定。
第二步:比较试验
试验者抛掷次数(n)正面向上的
次数(频数m)频率()
棣莫弗204810610.5181
布丰404020480.5069
费勒1000049790.4979
皮尔逊1200060190.5016
皮尔逊24000120120.5005
这个表让学生既了解到一些数学家的故事、感受到他们为追求真理而不惜时间的精神(比如:皮尔逊投了24000次,可想而知需要大量时间),又惊喜的看到:几位数学家的试验结果跟我们今天的试验结果大致相同----大量试验次数下频率数值稳定于0.5。学生很有成就感,老师趁此鼓励:今天,你们就可以做出数学家做的事,那么明天,你们就是未来的数学家。
第三步:模拟试验
输入次数,电脑很快地抛掷硬币,得到正面朝上的频数和频率,并同时画出了频率随试验次数增大的曲线图。
学生一方面惊叹于信息技术为数学研究带来的方便(像这样的抛掷硬币,省时省力、直观形象),另一方面认识到:尽管是随机试验,尽管每一次事件的发生具有偶然性,但随着试验次数的增加,正面朝上的频率曲线越来越平稳:即稳定于0.5。
以上分三步实施的试验说明:“正面向上”的频率稳定于0.5,“反面向上”的频率也稳定于0.5。由两个频率稳定到的常数相等说明两者发生的可能性相等,从而验证了猜想,判断公平的直觉是对的。
到这时,学生已经看到,大量重复试验下,任意抛掷硬币“正面朝上”这个随机事件发生的频率逐渐稳定到的常数刻画了随机事件发生的可能性的大小。
3、形成概念 深化认识
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p叫做事件A的概率,记作P(A)=p。其中m是事件A发生的频数,n是试验次数。
思考①:概率的取值范围是什么呢?
大部分学生能得出 0
思考②:定义中的“频率”和“概率”有何区别?
结合投币试验,同学知道各小组试验算出的频率不一定等于概率。区别就是:频率不一定等于概率,概率是频率趋于稳定的那个值。
你会求吗?
例:对某电视机厂生产的电视机进行抽样检测的数据如下:
抽取台数501002003005001000
优等品数4592192285478954
频 率0.900.920.960.950.960.95
1)计算表中优等品的频率(精确到0.01);
2)该厂生产的电视机优等品的概率是多少(精确到0.01)?
这个例题,是利用抽样检测这种大量重复试验,让学生先计算优等品的频率,然后观察频率稳定在哪个常数附近,从而选取这个常数作为优等品的概率。通过例题,使学生更具体地理解概率,巩固概率和频率的关系即频率不一定等于概率,比如频率有0.92、0.96,概率为0.95。突破难点1。同时也让学生看到进行大量重复试验是确定概率的一种方法。
4、变式训练 拓展提高
听两段情境对话,分组讨论对错并说明理由:
情境1):甲——我知道掷硬币时,“正面向上”的概率是0.5。
乙——噢,那我连掷硬币10次,一定会有5次正面向上。
2):甲——天气预报说明天降水概率为90%。
乙——我知道了,明天肯定会下雨,要不然就是天气预报不准。
对这两个情境,判断对与错并不难,难就难在如何准确的用概率知识理解。学生讨论时,教师深入各组,及时点拨,澄清学生可能存在的错误认识。
设计意图:情境1强调概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在。情境2突出概率从数量上刻画了一个随机事件发生的可能性大小。用这两个情境使学生正确理解大量随机试验结果的规律性和每次试验结果的随机性,突破难点2。
5、小结归纳 课堂延伸
小结归纳:
1)学生分组讨论,谈本次课收获与疑问,学生之间相互补充,相互释疑。
2)教师表扬课堂上中参与积极、表现精彩的小组和个人。
3)教师引导学生再一次理解概率的意义,揭示频率与概率的联系与区别。
课堂上的时间总是有限的,而知识的触觉是多方位的。为巩固本课知识,多角度提升能力,我设置了课堂延伸:
1)、P144 5,6题。
——进一步巩固由大量重复试验所得数据计算频率进而确定概率的方法。
2)、上网搜索并阅读有关姚明参加NBA以来罚球数据的统计,并根据你搜索到的数据,指出姚明在NBA比赛中罚球命中的概率。
——提高学生利用网络资源的意识和处理信息能力,让学生再一次感悟概率的意义和在生活中的应用。
四、方法分析
1、为了激活学生的课堂思维,体会随机现象特点,我采用情境激趣法,营造学习氛围。
2、为了让学生把对随机事件的直觉思维过渡为理性认识,我采用实验探究法,并且分三步实施:分组试验、比较试验、模拟试验,让学生更清晰地看到随着试验次数的增加,频率趋于稳定,从而更好的理解概率意义,突出重点。
3、为了突破难点——理解好频率与概率、随机性与规律性的关系,我采用小组讨论法和启发点拨法。
4、教学手段方面:利用多媒体技术,引用情境对话、制作电脑模拟试验,让学生感受信息技术为数学学习带来的方便,突出表现数学内在美。
五、评价分析
1、教学内容上:我关注教材的变化,概率统计内容在新教材里地位得到加强,但也有一个逐步渗透学习的过程。
熟悉问题情境→激发学习动机
易误解的例子→加强概念理解
著名数学史料→延续求知热情
2、教学理念上:始终贯彻以学生为中心的教育理念。关注学生的认知过程,重视学生的合作与讨论,随时发现、肯定学生的闪光点,让学生及时享受成功的愉悦。同时,结合学生暴露出的思想或方法上的问题,给予适时点拨。
3、教学预想:课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如气象部门怎样计算得出降水概率,姚明参加NBA以来罚球数据的原始资料及分析等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。