五年级数学教案汇编15篇
作为一名教师,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?下面是小编为大家收集的五年级数学教案,仅供参考,大家一起来看看吧。
五年级数学教案1
教学内容:
第10页例6及后做一做、练习二1—3题。
教学目标
1.知识与技能:掌握用“四舍五入法”取积的近似数。
2.过程与方法:让学生应用迁移的方法来求积的近似数。
3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。
教学重点
学生能用“四舍五入法”取积的近似数。
教学难点
学生能根据实际需要正确求积的'近似数。
教学过程:
一、复习.
1、口算:0.8×40.32×40.8×12.57.8×0.01
3.2×0.20.08×0.089.3×0.014.8-0.48
2、把下面各数精确到百分位。
0.256≈ 12.889≈ 40.00001≈
二、新授
1.教学教材第10页例题6.
(1)出示例题6:
(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?
(3)生尝试练习。
(4)抽生板演:0.049×45≈2.2(亿个)
0.049
× 45
245
196
2.205
(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)
①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)
②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)
(6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。
三、练习
1、完成第10页“做一做”。
生完成在练习本上,抽生板演,并说出四舍五入的方法。
2、课堂作业:第13页练习二1、2、3题。
五年级数学教案2
单元教学目标:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学内容
小数乘以整数 课型 新授课
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的.结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3. 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
① 先把小数扩大成整数;② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
五年级数学教案3
课型:
新授
教学内容:
教材P7及练习二第3、5、6、7、10题。
教学目标:
知识与技能:
使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。
过程与方法:
理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。
情感、态度与价值观:
养成认真计算与及时检验的学习习惯。
教学重点:
运用小数乘法的计算法则正确计算小数乘法。
教学难点:
正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程:
一、复习准备
1、口算。0.9×6 7×0.08 1.87×O
0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5
指名学生口算,然后集体订正。
2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
3、揭示课题:这节课我们继续学习小数乘法。(板书课题)
二、情景引入
1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
学生观察情境图,提取信息:
所求问题:(鸵鸟的最高速度是多少千米/小时)
所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)
思路分析:
(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)
(2)追问提高学习新知的兴趣:
①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)
②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)
③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。
让学生独立计算出鸵鸟的`最高速度,并集体订正。
(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)
学生可能会有以下几种验算的方法:
①用原式再计算一遍。
②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。
③观察法:观察小数位数或第二个因数比1大还是比1小。
④用计算器进行验算。
师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。
(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?
生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。
师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。
师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)
2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。
三、巩固练习
1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。
2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。
四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。
作业:5、6、7
课外作业:教材第9页练习二第10题。
板书设计:
求一个数的小数倍数是多少及验算
五年级数学教案4
教学目标
1、结合具体活动情况,经历测量石块体积的实验过程,操索不规则物体体积的测量方法。
2、在实践与操索过程中,偿试用多种方法解决实验问题。
教学重点
操索不规则物体体积的测量方法。
教学难点
偿试用多种方法解决实际问题。
教具准备
量杯、石块
教师指导与教学过程
学生学习活动过程
设计意图
一、创设情况,引入新知
1、出示石块
问:如何测量石块的体积?
极书课题。
2、以小组为单位,先制高测量方案,再实实实际测量,能直接用公式吗?
不能怎么办?
三、进行实验
1、将石块取入盛有一高水的长方体容器里,测量出容器的底面长、宽和小面高分别是多少/
2、放入石块前水高约18cm,放入石块后水面高30cm。石块的`体积是多少?
学生观察石块
想一想,如何测量石块的体积。
学生动手测量
水面高、底面长、宽分别是多少?
(老师测量的让学生量出来)
学生口算出水面升高了12cm.
生:底面积乘高是石块的体积。
并且列式计算
学生可以做实验,也可以由老师做,学生观察,并说如何测量出石块的体积的第二种方法。
创设情景
激发学生学习新知的兴趣。
引志学生操索与体会测量不规则物体的体积的方法。
引导学生小组合作,制高测量方案,并进行实验测量。
教师指导与教学过程
学生学习活动过程
设计意图
师板书:
20×10×12=2400(cm3)
=2.4(dm3)
3、将石块放入盛满水的容器里。
三、试一试
1、在一个长方体容嚣里,测量一个苹果的体积。
2、测量一粒黄正折体体积
学生根据题中的二倍用“底面积×高”的方法计算。
放入石块前,容嚣里的水是满的,放入石堠后,溢出的水在水槽中,倒入量西湖里,有多少这亳升,就是石块的体积。
通过两个实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种,让学生运用在操索活动中得到测量的方法。
板书设计:
有趣的测量
小实验:测量石块的体积:小面高:30cm
底面长:20cm、宽10cm、高18cm30-18=12cm
底面积×高=体积200×12=2400(cm3)
20×10×18=3600(cm3)=2.4(dm3)
五年级数学教案5
教学目标:
1、使学生能根据要求正确地运用“四舍五入”法求一个小数的近似数。
2、能正确的按需要用“四舍五入”法保留一定的小数数位。
3、会把较大的整整改写成以“万”或“亿”作单位的小数,再求近似值。
教学重点:
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数。
教学难点:
使学生能够区别求近似数与改写求准确数的方法。
教具准备:
多媒体课件。
教学过程:
一、情境导入
师:我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它.的近似数就可以了。如在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元5角。平常不需要说得那么精确,只要知道它的近似数即可,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题川、数的近似数) 。
二、自主控究
1.求一个小数的近似数。
(课件出示豆豆测量身高的情景图)
师:读情景.图,你能找出已知信息和所求的问题吗? .
生1:要解决的问题是如何得出豆豆身高的近似数。
生2:已知信息是豆豆的身高是0.984m,亮亮说:“豆豆身高约是0.98m。”红红说:“豆豆身高约1m”。
师:对于上面的已知信息,你是怎样理解的?
生b“豆豆的身高是O.984m”,这里的0.984m,是测量时精确到毫米得到的。
生2:“豆豆高约0.98m”,这里的0.98是精确到厘米得到的。
生3:“豆豆高约1m”,这里的l是精确到米得到的。
师:为什么会出现上面不同韵结果呢?
生:0.98和1都是0.984按不同要求取的近似数。
师:取一个整数的近似数用到的方法是什么?
生:我们取一个整数的近似数时,用到的方法是“四舍五入”法。
师:对,“四舍五入”的方法同样适用于小数取近似数。
师:下面同学们以小组为单位,讨论一下,0.984m是如何得到0.98的?
(小组讨论,全班交流)
生:“豆豆高约是0.98m”,这里的0.98m是把豆豆身高0.984m保留两位小数得到酌结果。
师:它是如何取的两位小数?
生:按要求把一个小数保留两位小数时,一般要看到千分位,如果千分位上的数大于或等于5就要向百分位进1,如果千分位上的数小于5,就舍去。
0.984≈O.98(保留两位小数),因为千分位上的'4小于5,所以舍去。
师:“豆豆高约lm”,这里的lm是把0.984m保留整数得到的结果。一个小数怎样才能保留整数呢?
生:一个小数,如果保留整数,就要看这个小数的十分位,然后按照“四舍五入”法取近似值,0.984m-≈lm。
师:如果0.984m保留一位小数,结果又是什么呢?
生:把0.984m保留一位小数,就要看到百分位,百分位上是8,大于5,就要向十分位进1,十分位上是9,9+1=10,接着向个位进1,个位上0+1=1,所以0.984m保留一位小数是1.0m。
0.984≈1.0(保留一位小数),百分位上8大于5,向前一位迸1。
师:后面的0可以省略不写吗? ,
生:不能,因为要是省略就变成精确到整数部分的个位了。
2、把较大的整数改写成以“万”或“亿”作单位的小数。
师:读图,你能读出什么信息?
生:地球与月球的距离是384400km。
师:384400km,数据比较大,书写起来也不方面,你能把它改成以“万”为单位的数吗?
(小组讨论,全班交流)
生:改写成“万”作单位的数,就是把这个数缩小到原数的1/10000,也就是把小数点向左移动四位,然后点上小数点。
师:你会表示吗?
生:384400km=38.44km
师:上面的改写方法正确吗?
生:不正确,因为384400和38.44根本就不相等。
师:那怎么办呢?谁有办法解决这个问题?
生:在38.44的后面加上一个“万”字即可,因为把384400变为38.44缩小到了原数的而1/10000。
师:好,上面的这一过程可以表示为384400千米=38.44万千米。
师生共同总结:小数点向左移动四位,在万位的右边点上小数点,在数的后面加上“万”字。
师:读情景图,你发现了哪些数学信息?
生1:已知木星距离太阳778330000km。
生2:所要解答的问题是木星离太阳的距离是多少亿千米?(保留一位小数)
师:这个问题和上面的问题有哪些相同和不同的地方?
生:上面是把一个数改写成用“万”作单位的数,这个问题是把一个数改写成用“亿”作单位的数,并且还要求保留一位小数。
师:把一个数改写成用“亿”作单位和改写成用“万”作单位有什么相同之处?
生:都是把大数改写成一个用小数表示的数,所以都应该是把小数点向左移动。
师:改成以“万”为单位的数,小数点向左移动四位,那么改成以“亿”为单位的数,小数点向左移动几位呢?
生:应该是八位,然后加“亿”字。
师:好!同学们真聪明,用自己的思维,类推了把一个数改成用“亿”作单位的数。你能写出改写过程吗?
(学生独立尝试,全班投影展示)
778330000千米=7.7833亿千米
师生总结方法:小数点向左移动八位,在亿位的右边,点上小数点,在数的后面加上“亿”字。
师;如果保留一位小数,你会吗?
生:7.7833亿千米≈7.8亿千米
三、控究结果汇报
师:用“四舍五入”法,求一个数的近似数时,有哪些需要注意的地方?
(小组讨论,汇报交流).
生:用“四舍五入”法求一个小数的近似数时,保留整数,表示精确到个位,看到十分位;保留一位小数,表示精确到十分位,要看到百分位;保留两位小数,表示精确到百分位,要看到千分位……
师:表示近似数时,小数末尾的0怎么办呢?
生:表示近似数时,小数末尾的0是不能省略的。
师:如何把一个较大的数改成以“万”或者“亿”为单位的数?
(小组讨论,全班交流)
师生总结:把一个大数改写成以“万”为单位的数时小数点向左移动四位,加上“万”字。把一个大数改写成以“亿”为单位的数时小数点向左移动八位,加上“亿”字。
师:改写时,需要注意什么?
生:在改写的过程中,不要把单位“万”“亿”丢掉。
四、师生总结收获
师:同学们,通过本节课的学习,你有哪些收获?
生1:求小数的近似数的方法和求整数的近似数的方法类似,都是采用“四舍五入”法。
生2:把大数改写成用“万”或“亿”作单位的数,写起数来就简单多了,这体现了数学的简洁思想。
师:小数的近似数在我们的生活中应用非常广泛,我们的身边就有很多类似的数,你们课下去找一找,看看它们都存在于我们生活中的哪些地方。让我们在发现中学习数学,体会数学与我们的密切联系,做生活中的有心人!
【设计意图:在教学过程中,学生能够在知识、能力、数学思想方法以及学习方法上有所收获】
板字设计:
例1:0.984保留两位小数 0.984保留一位小数 0.984保留整数
0.984≈0.98 0.984≈1.0 0.984≈1
↑ ↑ ↑
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
例2 例3
142800千米=14.28万千米 778330000=7.7833亿千米≈7.8亿千米↑
五年级数学教案6
(一)导入
提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?
学生回忆并回答。
(二)教学实施
1.出示例3中的插图。
提问:从图中你知道了哪些分数信息?其中一个同学说:“我吃了一个半”,怎样用分数表示一个半?
老师随着提问,出示下图。
学生观察图,先独立思考,然后指名回答,“一个半”是l+的和。
老师提示:1+的和可以写成1。(板书:1)
2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?
学生试着说一说,老师分另“板书:1,2,。
3.老师指出:像1,1,...这样的分数,叫带分数。观察这些带分数都是怎样组成的'?你会读出这几个带分数吗?4,请学生独立举出一两个带分数,让学生读一读。
5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
6.指出:有时根据需要,要把假分数化成整数或带分数。
(三)思维训练
做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)
(四)课堂小结
通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。
五年级数学教案7
1、教学目标
1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;
2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
2、学情分析
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
3、重点难点
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4、教学过程
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的`)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛
五、拓展总结。
师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听X先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
五年级数学教案8
【教学目标】
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象思维能力。
【重点难点】
1.掌握因数、倍数、质数、合数等概念的联系及其区别。
2.掌握2、5、3的倍数的特征。
3.质数和奇数的区别。
【教学指导】
由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。
2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。
【课时安排】
建议共分7课时
1.因数和倍数2课时
2.2、5、3的倍数的特征3课时
3.质数和合数2课时
【知识结构】
因数和倍数(1)
学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授
学习目标1.从操作活动中理解因数和倍数的意义,会
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情
教学重点理解因数和倍数的含义
教学难点判断一个数是不是另一个数的因数或倍数。
教具运用课件
教学方法二次备课
教学过程
【复习导入】
1.教师用课件出示口算题。
10÷5=16÷2=12÷3=100÷25=150×4=
220÷4=18×4=25×4=24×3=20×86=
学生口算
2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的.商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。
A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
板书设计因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
教学反思
【作业设计】
五年级数学教案9
一、说教材
“倒数”是北师大版九年义务教育六年制小学数学第十册第三单元的内容。本节课是在学生学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备的。它主要包含两部分知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下学习目标:
学习目标:
1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
教学重点:
本着课程标准,在吃透教材基础上,我觉得首先必须掌握倒数的意义与求法,其次是1、0的倒数,小数、带分数倒数的求法,所以我认为倒数的意义及其倒数的求法是教学的重点。因为乘积是1的两个数互为倒数,要强调倒数是对两个数来说的,它们是相互依存的,不能孤立地说某一个数是倒数,所以我认为正确理解倒数的意义是教学的难点。教学的关键就是教会学生克服难点,办法是结合课本中的例子说明,然后让学生举出几组倒数,并对学生的回答发表意见,用倒数的意义来检验所举的例子对不对。
二、说教法、学法
本课我采用了发现式教学法、小组讨论式教学法。在课堂中采取讲练结合的模式,给学生足够的时间,充分地让学生自学。我将在教学中始终扮演一个引导者,合作者的角色,引导学生从事数学活动和交流,让他们在合作中发现问题、讨论问题、解决问题,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功。帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。
本节课,我根据对教材的分析、处理和学生的认知水平,设计了如下教学程序。
三、说教学过程
(一)创设情境,导入新课
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。所以我由生活中的具体的实例引入:
先看看语文中有趣的“倒数”现象。汉字“吴——吞”,“杏——呆”激发兴趣!然后联想自然界中这样上下颠倒的动物。(蝙蝠、树懒)再到让学生思考:数字有没有这样的特性呢?举例说明,从而引出本节课的主题:倒数。
(二)通过自学、小组讨论的方式来学习,并且考虑以下三个问题:
1.什么是倒数?
2.互为倒数中的“互为”是什么意思?
3.如何求一个数的倒数?
在小组自学过程中,深入个学习小组,并引导学生抓住“互为”二字作文章,让学生理解“互为”应该是双方面的',例如“我和你互相成为朋友”的意思,可以理解成“我是你的朋友”,或者“你是我的朋友”,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。再组织同桌之间互相说倒数,以巩固理解。
求倒数的方法,仍采用小组汇报的方式,师从以下几方面进行点拨:
①找倒数(分数),引导学生考虑怎么找的?有什么规律?引导学生概括总结出本课新的知识点:求一个数的倒数,只要把这个数的分子、分母调换位置。
②整数(大于1的自然数),这样的数怎么办?引导学生概括总结:整数可以看成分母是1的分数,它们的倒数也是只要把这个数的分子、分母调换位置。
③ 1有没有倒数?如果有,它的倒数是多少?引导学生概括总结:1有倒数,1的倒数就是它本身,因为1等于一分之一,一分之一分母、分子调换位置还是一分之一,就是1。
④0有没有倒数?学生可能会引起争议,0不能作分母,0不能作除数,任何一个数和0相乘的积都不会是1,所以0没有倒数。
⑤带分数及小数,引导学生归纳总结:先变成假分数,再调换分子分母的位置。
(三)巩固练习
通过达标反馈巩固求倒数的方法。
(四)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
(五)总结反思——提高认识
由学生总结本节课所学习的主要内容
四、简述板书设计
(略)
结束:以上,我仅从说教材,说教法,说学法,说教学程序等几方面,说明了“教什么”和“怎么教”,阐明了“为什么这样设计”。希望各位领导、老师对本次说课提出宝贵意见。
五年级数学教案10
教学目标:
1.使学生经历观察的过程,让学生认识到从不同的位置观察物体,所看到的形状是不同的。
2.能正确辨认从正面、侧面、上面观察到的两个物体的形状。
3.借助动手操作,发展学生的空间观念和同伴合作意识。
4.联系生活实际,使学生体会到数学知识来源于生活。
教学重点:
在实际的观察活动中,让学生认识到从不同的位置观察物体,所看到的形状是不同的。
教学难点:
能正确辨认从正面、侧面、上面观察到的两个物体的形状。教具准备:长方体、正方体、球、圆柱等。
德育渗透:
帮助学生树立从小仔细观察事物,认真思考的好习惯。
情感与态度目标:
通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教学过程:
一、创设情境、激趣感知
比赛:快速抢答。下列照片中分别是什么?(师分别出示三组物体照片:电话、手机、手电筒。以下是一组图形照片。)
师:同样一个物体照片,为什么有的能一眼看出,有的却看不出?(板书课题:观察物体)
[良好的开端是成功的一半,创设学生喜欢的“猜一猜”引入,新颖有趣,充分的调动了学生的积极性,使学生立刻进入了学习的状态,让学生初步感知新知。]
二、师生互动、探究新知
(一)教学例1
1.引入:神探“冒险小虎队”的故事同学们知道吗?他们就是靠敏锐的观察力,破了很多大案。今天我们就一起去看看他们最近在忙些什么?(板书:观察)
[设计意图:运用课件动态演示,讲神探小故事,声色并茂,立刻能吸引学生的注意力。]
2.出示例1:一位专家刚刚研制出一种新药,他把新药放在小药箱里,可是有一天,他发现药不见了,是谁偷了药?
3.请学生从不同方向观察小药箱,问:你观察到什么?(分小组操作、交流。)
4.“冒险小虎队”找到四个犯罪嫌疑人,他们每个人看了一眼小药箱后说了一句话:
A 我看到的那一面上画了个红十字。
B 我看到的那面上写:小药箱。
C 我看到的是白色的面,没什么标记。
D 药箱相对的面颜色是一样的。
你认为谁说了谎话,为什么?(板书:推理)
[设计意图:引导学生通过观察进行推理,形成良好的'思维习惯。]
5.如果前面为正面,其它面分别是什么面?如果右面为正面,其它面分别是什么面?
小结:物体的左、右、正面都是相对的。
6.填写观察实验报告:
从不同角度观察下面三个物体,把你从各个角度看到的形状画下来。
8.课间小歇:欣赏古诗《题西林壁》
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
[设计意图:让学生在优美的乐声中欣赏古诗,进行美育教育,体现数学与其它学科之间的整合]
(二)教学例2
1.引入例2。
神探“冒险小虎队”最近又在忙什么呢?某博物馆被盗了两件古董,被盗当天门窗都是锁好的。(形状如下)
2.出示例2。
(1)思考:他们谁是小偷?为什么?他们分别是从哪个方向上看到的?
(2)动手操作。
(3)汇报,小结。
三、巩固新知
4.画一画。
选择两个物体摆一摆,先确定一个面为正面,然后分别从上面、正面、左(右)面等角度观察所摆物体,在纸上画出所见到的形状。
5.猜一猜:展示作品,其它组同学猜猜这组物体是什么。
三、小结:
今天我们学会了从不同位置观察物体,还学会了推理。在生活中,我们处处都要留心观察,做一个勤于思考的好孩子,你们能做到吗?
[设计意图:这几个实际动手操作的练习的设计,不仅让学生巩固了本节课所学的知识,也让他们明白生活中处处有数学,提高了他们对学习数学的兴趣。]
五年级数学教案11
教学目标:
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
教学重点:
理解质数和合数的意义
教学难点:
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
教具学具准备:
学生每人准备一张学号牌、课件
教学过程:
(一)创设情境,激趣导入
1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。
2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。
3、学生汇报预习结果,同时提出学习目标。
(二)主动参与,探索新知
1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)
2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)
【设计意图:根据给定的标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的理解。】
3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)
4、判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
学生先自己想一想,然后分组讨论,汇报交流。
【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】
(三)动手实践,制作100以内的质数表。
1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?
(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的'更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】
(四)巩固练习,拓展延伸
1、你能写成几个质数相乘的形式吗?
6= 、、、 28 = 、、、、
2、判断下面这段话中的数字是质数还是合数。
2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。
3、猜一猜:小红家的电话号码是多少?
最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数
【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】
4、课堂反馈:
(五)归纳总结,师生评价
1、总结:本节课学习了什么?你有什么收获?还有什么疑问?
2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。
3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。
【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】
五年级数学教案12
教学内容:
书第54——55页,有趣的测量及试一试第1、2题。
教学目标:
1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。
2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。
3.情感、态度与价值观:在观察、操作中,发展学生空间观念。
教学重点:
用多种方法解决实际问题。
教学难点:
探索不规则物体体积的测量方法。
教学准备:
不规则石头、长方体或正方体透明容器、水。
教学过程:
一、导入新课
师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?
老师出示准备好的不规则石快。
师:这个石块是什么形状的?(不规则)
什么是石块的体积?
你有什么困难?
二、教学新知
1.测量石块的'体积
(1)小组讨论方案
师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?
(2)小组制定方案
(3)实际测量
方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。
师:为什么升高的那部分水的体积就是石块的体积?
方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。
师:为什么会有水溢出来?
这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。
1.实际应用
一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?
(1)读题,理解题意。
(2)分析:你是怎么想的?
(3)学生尝试独立解答。
(4)集体反馈,订正。
让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)
三、课堂小结
学习了这节课,同学们有什么感受和体会?有什么提高?
作业设计:
1.书第55页第2题。
本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。
2.学生再找一些实物,测量出体积。
板书设计:
有趣的测量
方案一:
方案二:
“底面积×高”的方法计算。
2×1.5×0.2=0.6(立方分米)
五年级数学教案13
“方程”是《数学课程标准》数与代数中“式与方程”部分的内容,无论是原《大纲》还是《数学课程标准》,方程的内容都占有重要的地位,原《大纲》提出的内容是:用字母表示数。简易方程(ax±b=c,ax±bx=c)。列方程解应用题。教学要求是会用字母表示数、常见的数量关系、运算定律和公式;初步理解方程的意义,会解简易方程;初步学会列方程解应用题。
《数学课程标准》的具体标准内容是:
(1)在具体情境中会用字母表示数。
(2)会用方程表示简单情境中的等量关系。
(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。虽然都是三条,但两者在具体的要求和内含上有所不同。
首先,《数学课程标准》强调了要在“具体的情境中”用字母表示数,主要是考虑到用字母表示数是数学符号化的重要内容,从具体情境中抽象,概括出含有字母的“代数式”是数学建模的重要过程。借助学生熟悉的具体事物,认识用字母表示数,不但使学生了解数学“符号”的作用,更重要的是,渗透初步的数学建模的。
其次,《数学课程标准》不再单纯要求学生列方程解应用题,而是强调“会用方程表示简单情境中的等量关系”,突出了方程的数学模型。让学生在用方程表示具体等量关系中理解方程的实际意义。方程是刻画现实世界数量关系(相等)的数学模型,在传统的教学中,注重的是有关的概念和技能,如方程的等价性、方程解的讨论、方程的解法等。历来被看作数学教学的重点和难点,教学中重视给学生分析数量关系,机械的列出方程,解答问题,更有甚者,把问题进行分类,并就某一类问题主要的等量关系和解题套路。如,行程问题,浓度问题,工程问题等,这样的教学缺乏探索性、研究性和挑战性,学生体会不到方程是现实世界的数学模型,更没有经历到数学建模的过程,应用意识和实践能力的培养也就成了空话。
《数学课程标准》把“会用方程表示简单情境中的等量关系”单列出来,就是要强调方程在数学教育中的作用,让学生感受方程和实际问题的联系,体会到方程是刻画现实世界的模型,领会数学建模的和基本过程,提高解决问题的能力和自信心。第三,《数学课程标准》强调了利用等式的性质解简单的方程。而不是原《大纲》教材中的利用加、减、乘、除各部分间的关系作为解方程的依据,突出了方程的“代数”以及和初中知识的衔接。鉴于上面的变化,新教材与传统教材在知识建构和内容编排上也有着不同的特点。
第一、教材安排和设计思路不同。传统教材中,方程的内容一般分三个小节(1.用字母表示数;2.简易方程;3.列方程解应用题)集中安排在五年级上册。在学习用字母表示数以后,先学解方程的方法,再学列方程解应用题。新教材与传统教材相比,首先把式与方程的内容分两个单元分别安排在四年级下册和和五年级下册(本单元)。另外,打破先学解方程的方法,再学列方程解决应用问题的教材体系,在学生认识、了解等式的基本性质以后,把学习方程的解法和解决应用问题整合在一起。选择学生熟悉的、感兴趣的事物和问题。如,手写字和电脑打字问题、猜数奥秘、向山区小朋友捐书等。让学生在具体问题情境中,找到具体问题中的等量关系,进而列出方程,学会求解方法。教材设计的基本思路是:呈现问题情境--数学模型(找等量关系、列方程)--尝试解答--互动学习。
第二、解方程的依据不同。传统教材中,把小学阶段加、减、乘、除各部分间的关系作为解方程的依据,初中则用等式的基本性质解方程。这种小学、初中解方程思路和方法的不一致,使小学阶段的学习非但起不到打基础的作用,在一定程度上还增加了初中学习解方程的难度。新教材按照《数学课程标准》的要求,小学、初中解方程的依据和思路一样-用等式的基本性质解简单方程。考虑到学生还没有学习有理数的运算,本套教材删去了a-x=b、a÷x=b的方程基本类型。
第三、列方程解应用问题的内容不同。传统教材中,列方程解决的应用问题都是学生以前用算术方法能够解答的问题。首先,因为两种解题方法的思路不同,加上学生长时间学习用算术方法解答,习惯于算术方法的解题思路,所以学习用方程解决应用问题时,往往受到算术方法解题思路的干扰,影响学习效果。另外,传统教材一般采取先鼓励学生用算术方法解答,再讲用方程解答。而且,把用两种方法解答作为解决问题方法多样性的要求。这样一来,用方程解决问题的学习,不但不利于提高学生解决问题的能力,反而增加了学习的难度,容易造成学生思维方面的混乱。新教材根据《数学课程标准》的要求,首先降低“应用题”的难度,不安排用算术方法解逆思考的应用问题,不单设应用题单元,把解决应用问题和学习计算方法整合在一起,让学生在解决问题的过程中学习计算。这些应用问题都是学生熟悉的、用基本数量关系和四则运算的意义能够解答的简单问题。用方程解应用问题时,则选择一些简单逆思考的或适合用方程解答的问题,强调用x表示具体的量,通过对具体情境中数量关系的分析,找到等量关系,然后,利用等式的解决问题。这样的教材设计,一方面,减轻了学生学习用算术方法解决稍复杂问题的负担,避免了算术方法对用方程解决问题的干扰;另一方面,有利于培养学生数学思维,形成数学思维方法,有利于中、小学知识的衔接。
本单元共安排7课时。主要内容有:认识等式和方程,等式的基本性质,解简单方程以及列方程解决简单实际问题等。结合单元内容,在探索乐园中安排了“鸡兔同笼”问题解题思路和方法的探索活动。
本单元的教育目标是:
1、通过具体情境,了解等式和方程的意义,会用方程表示简单情境中的等量关系。
2、理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3),会列方程解决一些简单的应用问题。
3、在解方程的过程中,能进行有条理的思考,能对每一步计算和结论的合理性作出有说服力的说明。
4、具有回顾与分析解决问题过程的意识,能表达解决问题的'过程,能检验方程的解是否正确。
5、感受用方程解决问题的价值,认识到许多实际问题可以借助解方程的方法来解决,获得自主解决问题的成功体验,增强学习数学的自信心。
第1课时,认识等式和方程。
教材选择了天平这个直观教具,呈现了六幅不同的用天平表示物体质量关系的情境图(其中有两幅图天平两边物体的质量不同),提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。“试一试”给出了具体的式子,让学生判断哪些是方程,哪些不是方程。“练一练”安排了三个练习题,第1题,用三幅括线图呈现了已知数量和用x表示的未知数量的关系,让学生尝试列出方程。第2题,说明用x表示的未知量和已知量关系的文字叙述题,让学生列出方程。第3题,是把文字叙述的方程“翻译”成方程式的练习。教学时,有条件的可以用天平操作,或用课件演示,让学生认真观察、写出式子,再通过比较和讨论等,认识等式和方程。做“练一练”的题目时,要帮助学生理解x表示的具体意义。如,一本书x元,3本的总价就是3×x=3x元;一辆汽车的载重量5吨,用这辆汽车运x次,可以运40吨的次数,也就是说5×x=40。
第2课时,等式的基本性质。
教材仍然用天平设计了两个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。实验一,用六幅天平图呈现出实验的方法和步骤。在用算式表示实验结果的基础上,通过观察实验的过程、算式,使学生知道“等式两边同时加上或减去同一个数,等式仍然成立”这一规律。实验二,用两组天平图呈现了操作方法。在用算式表示实验结果的同时,使学生知道“等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立”这一规律。由于等式的性质是解方程的基础和依据,教学时,教师要给予特别重视,可以用课件进行演示,或用天平操作,给学生认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。“试一试”和“练一练”中,分别安排了在○里填运算符号,在□中填数的模拟解方程练习。练习时,要让学生看懂题目的要求,特别要说一说是怎样想的。也就是根据等式的基本性质做的,为下面用等式的基本性质解方程做准备。
第3课时,列方程解决一步计算的应用问题。
教材首先用括线的方式呈现了一件上衣58元,一条裤子x元,一共92元的情境图,通过兔博士的话“一条裤子多少元?”把x和要求的问题联系在一起。然后,鼓励学生借助直观图列出方程,并根据等式的基本性质解方程。交流时,通过“方程两边为什么都减去58?”的问题,启发学生交流解方程的依据,学会解方程的思路和方法。另外,教师要注意指导解方程的书写格式,如:要先写“解”字,各行的等号要对齐等。接着,选择了王叔叔手写和用电脑打字的事例,以文字叙述和人物口述的方式呈现了“王叔叔用电脑每分钟打120个字,电脑打字的速度是手写速度的3倍”等信息,提出了“王叔叔每分钟手写多少个字?”的问题。这是一道关于倍数的逆思考的问题,也就是“已知一个数的几倍是多少,求这个数”的问题,学生第一次接触。教学时,首先要帮助学生了解王叔叔每分钟打字速度和手写速度之间的关系,然后说明列方程的方法和步骤,如:先写“解”字,设未知数x等,引导学生根据数量间的相等关系,列出方程。然后让学生尝试解方程,交流时,重点说一说“为什么两边要除以3,依据是什么”,掌握解方程的思路,即方程左边3x除以3等于x,要使方程两边结果不变,就要同时除以3,依据的是等式的基本性质。
第4课时,列方程(ax±b=c)解决两步计算的应用问题。
教材首先设计了一个猜数游戏。以师生对话的形式,说明了游戏的方式和过程,通过让学生自己想一个数,并进行“把它乘2,再加上10,等于多少”的运算,教师马上猜出学生想的数这个既神秘、又有挑战性的游戏,引起学生探求猜数奥秘的兴趣,接着,通过“大头蛙”的话“老师是列方程求出来的”引出列方程解答的问题。即:设学生想的数为x,根据游戏规则和学生算出的结果列出方程,然后,学习解ax±b=c方程的思路和方法。最后,介绍什么是方程的解,什么是解方程这两个概念。教学时,首先教师和学生要进行实际的猜数游戏,利用游戏中生成的课程资源组织教学。不要简单地讲游戏或模仿教材上的师生对话。解决了游戏中的问题后,选择了五年级(1)班同学献爱心向山区小朋友赠书的事情,以文字和对话的方式呈现了“聪聪捐了34本书,比亮亮捐书本数的2倍少4本”的信息和“亮亮捐多少本书?”的问题。这是传统教材中“已知一个数的几倍少几,求这个数”的问题。解决这个问题的方程是:2x-4=34.解这个方程的思路方法与前面的相似,所以,解决这个问题的重点是找等量关系,列方程。教学时,要帮助学生了解情境中的数学信息及其含义,找出数量间的相等关系,如“比亮亮捐书本书的2倍少4本”就是不到亮亮捐书本书的2倍,比2倍少4本。所以,亮亮捐书的2倍减去4就等于聪聪捐书的34本。然后鼓励学生自主列出方程,并求解。交流时,结合求出的方程的解,说明检验的必要性和方法,再由学生自行检验。
第5课时,列方程解决稍复杂的相遇问题。
教材以文字叙述加示意图的形式呈现了北京到上海的路程,乙车的速度,甲、乙两列火车同时从两地相对开出后到相遇所用的时间,以及“甲车平均每小时行多少千米?”的问题。这个问题中有多组等量关系,所以提出了“找出等量关系,试着列方程解答”的要求。以学生进行算法交流的形式,呈现了两种思路不同的解法。教学时,帮助学生理解题意,鼓励学生自主尝试列出方程,解决问题。另外,要给学生充分展示不同方程的机会。如果学生列出:1463-7x=87×3的方程,首先要给与肯定,对解答正确的给与表扬。但不作要求。提示学生,尽量不要把带未知数的量作减数。“试一试”选择了甲、乙两个工程队同时从两端开凿一条隧道的事例,以图文形式了隧道的长度、计划完成的时间、甲队计划每天完成的米数等信息,提出了“乙队每天需要完成多少米?”的问题。这是一道可以用相遇问题思路解决的工程问题。可以让学生自主解决问题。练一练中还安排用“相遇问题”解题思路解决的问题。
第6课时,列方程解决求两个未知数的应用问题。
教材设计了英语书配磁带的现实问题,用文字呈现了“一套英语读物和一套磁带共284元。其中磁带的价钱是英语读物价钱的3倍,这套书和磁带各多少钱?”。这个问题中有两个未知量,要解决两个问题。即,磁带的价钱是多少和英语读物的价钱是多少。解决问题时,需要把书的价钱设为x,把磁带的价钱用3x表示。找到等量关系,列方程解答。先求出书的价钱,再求磁带的价钱。教学时,可画出线段图表示题中的数量关系,引导学生根据磁带价钱与读物价钱之间的关系,用x和3x分别表示两个未知量,找出数量间的相等关系。解方程时,要帮助学生理解x+3x=4x,求出英语读物的价钱后,根据磁带和英语读物的关系,求出磁带的价钱。接着,教材给出了一个数的4倍比这个数多135,这个数是多少?这是本套教材第一次出现文字题。教学时,教师要帮助学生理解文字叙述的含义,再让学生尝试列方程求解。“试一试”用两幅线段图,说明两组数量关系。教学时,教师要指导学生看懂图,然后尝试列方程求解。
第7课时,“探索乐园”,这个探索乐园的主题是解决“鸡兔同笼”问题,了解这一类特殊问题的解题方法。
教材选择了三个问题。问题一,以对话猜数的方式给出了“鸡和兔一共有22个头,70条腿”的信息,提出了“鸡和兔各有几只?”的问题,通过蓝灵鼠“还是算一算吧!”要求学生自主探索,用自己喜欢的方法解决问题。教材呈现出三种解答方法,即:假设法、列表法、用方程解答。教学活动中,教师要及时引导和启发,使学生了解这类问题的解决方法,特别是假设法和列方程解答。
问题二,用文字叙述给出“龟和鸭共23只,它们的腿有60条”的信息,提出“龟和鸭各有几只?”的问题。这个问题与“鸡兔问题”解题思路的简单应用。可以鼓励学生自主解决。
问题三,用信息图呈现出两种不同洗涤液的单价,提出“用100元购买这两种洗涤液,可以有几种买法?各买几瓶?”的问题。这个问题,由于购买的瓶数是任意的,所以答案有多种。教学时,要给学生充分的自主活动空间,让他们在了解数学信息的基础上,利用已有的知识经验,解决问题。发展数学思维。
五年级数学教案14
一、复习旧知,激趣导入
出示“唐僧师徒四人取经的动画片”。
西游记是同学们最喜欢的四大名著之一,在西天取经的路上,八戒遇到了一道数学问题想请同学们帮忙,愿意么?大屏幕展示图片,指名读。
1.3张大小一样的饼,平均分给4个人,该怎么分呢?
2.估一估:3张饼平均分给4个人,每人能得到一张完整的饼吗?
3.请你能用手中的圆片代替饼帮他们分一分。
二、动手操作,探索新知
活动一 平均分3张饼
1.小组讨论:把你的想法和小组内的其他同学说一说。
2.动手操作:用3张圆片代替3张饼,动手画一画,分一分
3.汇报交流:
A 方案:一个一个分。边说边演示分的方法及过程。
为什么是3/4呢?
B 方案:三个叠放分。还是3/4
4.大屏幕展示三种分法的动态图
小结:两种分法虽然不同,但分的结果相同,每人分得了3/4张饼,这和我们估计的每人分得的饼少于1张是一致的'。
活动二 平均分9张饼
1.出示课件:猪八戒吃了一张饼的3/4,没有吃饱,就让悟空再弄几张饼,悟空就去其他地方又化斋来9张饼,平均分给4个人该怎样分呢?每人分得多少张?”
2.师:9张饼平均分给4个人,怎样分?
3.估一估:9张饼平均分给4个人,每人大约得到多少饼呢?
4.动手操作:组长拿出9张圆片,小组同学合作,画一画,分一分。
5.汇报交流:
A方案:一个一个分
B方案: 9个叠放分:平均分成4份,每人分得了9/4。问:你们是怎么想的?为什么是9/4呢?问:9个1/4是多少?
C方案:先拿8个分,每人2个,剩下的1个平均分成4份,每人即2+1/4(板书)
师:2和1/4合起来就是二又四分之一(板书:读作:二又四分之一)
生齐读两遍。你能说几个像这样的分数吗?
像这样由整数和真分数组成的分数叫做带分数(板书:带分数)介绍带分数是由整数和真分数两部分组成的并强调带分数的书写格式。
6.分数的分类:
师:观察这些分数的分子与分母,你发现了什么?
生1:分子比分母小 师:你能说几个像这样的分数吗?
像3/4……这样的分数叫作真分数。(板书:真分数)请同学们观察这些真分数,有什么共同特点?(分子比分母小)其实真分数是我们的老朋友了。
生2:分子比分母大 师:你能说几个像这样的分数吗?
像9/4……这样的分数叫作假分数。(板书:假分数)请同学们观察这些假分数,有什么共同特点?(分子比分母大)
说明像8/8……这样分子等于分母的分数也是假分数。象8/8这种分子和分母相等的假分数可以写成整数1
刚才分饼的过程中我们可以知道9/4和二又四分之一是相等的,象9/4这样的假分数可以写成这样的分数:二又四分之一
其实带分数是某些假分数一种特殊的书写形式。
把所有的分数分类,可以分为几类?(两类:真分数和假分数)
(设计意图:由活动操作一做了铺垫,所以这一环节着重让学生通过自己动手操作的过程理解“假分数”、“带分数”的概念以及它们之间的特点。)
三、巩固提高、拓展延伸
1.学生自主写出一个分数,小组内介绍相关知识。
(1)7/8的分数单位是(),有()个这样的分数单位?再加上()个这样的分数单位就等于1。
(2)以8为分母,还可以写出哪些真分数?1/8;2/8;3/8;4/8;5/8;6/8;
(3)以8为分母,以8为分母,一共有几个真分数?最小的真分数是谁?最大的真分数是谁?
(4)以8为分母的假分数都有哪些?一共有多少个?(无数个)其中最小的假分数是谁?
(5)以8为分母最小的带分数是多少?
从同学们积极的交流中,老师知道你们对本课的知识掌握的一定很棒!下面我们到指挥刀去参加一个闯关游戏好么?记住自己每回答一次问题就可以加一分。
2智慧岛闯关
第一关、根据成语说出分数,再判断是真分数还是假分数。
①半信半疑( )
②是一举两得( )
③十拿九稳( )
④七上八下( )
第二关、用假分数和带分数表示图中阴影部分
四分之七表示什么?一又四分之三表示什么?
第三关、如图,在上面的()里填上真分数或假分数,在下面的()里填上带分数。
数轴上有0、1、2、3、4、三分之三、一又三分之二、三分之八、三分之十
需要填三分之一、三分之五、三分之六、二又三分之二、三分之九、三又三分之一
用这些分数跟1比较,你发现了什么?
第四关、议一议
1、当x( )y时, x/y 表示一个真分数;
当x( )y时, x/y 表示一个假分数。
四、自我总结,回顾收获
1、同学们顺利的闯过了四关,我们又进一步了解了真分数和假分数。你能向大家介绍你的新朋友有哪些特点吗?
2、用一个分数来评价一下你自己在这节课中的表现?
3、老师告诉同学们一个成功的秘密,想知道吗?(1/100的天才+99/100的努力=100/100的成功)祝同学们在今后的学习生活中有更大的收获,有更优异的表现。
五、分层作业、课堂延伸
奋进小队:书中1、2、3题;
1、看图写分数。
2、以5为分母,分别写出3个真分数和3个假分数。
3、在直线上面的□里填上假分数,在下面的□里填上带分数。
互助小队:能力培养3、4、5题;
26页—3、在直线上面的□里填上假分数,在下面的□里填上带分数。
26页—4、啄木鸟医生。
26页—5、填一填。
雄鹰小队:
①课外补充题;
② 用16开的纸设计一张跟分数有关的数学小报。
五年级数学教案15
在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
学情分析
1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;
2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。
教学目标
1、帮助学生理解质数、合数的'概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。
2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。
3、活化抽象的概念,增进学生应用数学的意识,激发学生学习数学的热情。
教学重点和难点
1、质数、合数的意义。
2、质数、合数与奇数、偶数的区别。
【五年级数学教案】相关文章:
五年级数学教案08-10
五年级数学教案06-24
五年级上册数学教案04-18
五年级下册人教版数学教案10-12
小学五年级数学教案07-05
五年级下册数学教案07-29
五年级数学教案15篇08-20
五年级数学教案精选15篇01-14
五年级数学教案 15篇12-27
五年级数学教案15篇11-26