当前位置:育文网>教学文档>教案> 高中等差数列教案

高中等差数列教案

时间:2025-01-03 08:56:43 教案

高中等差数列教案

  作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。写教案需要注意哪些格式呢?下面是小编收集整理的高中等差数列教案,希望对大家有所帮助。

高中等差数列教案

  7.1(1)数列(数列及通项)

  一、教学内容分析

  本小节的重点是数列的概念.在由日常生活中的具体事例引出数列的定义时,要注意抓住关键词“次序”,准确理解其概念,还应让学生了解数列可以看作以正整数集(或它的有限子集)为定义的函数,使学生能在函数的观点下理解数列的概念,这里要特别注意分析数列中项的“序号”与这一项“”的对应关系(函数关系),这对数列的后续学习很重要.

  本小节的难点是能根据数列的前几项抽象归纳出一些简单数列的通项公式.要循序渐进的引导学生分析归纳“序号”与“”的对应关系,并从中抽象出与其对应的关系式.突破难点的关键是掌握数列的概念及理解数列与函数的关系,需注意的是,与函数的解析式一样,不是所有的数列都有通项公式;

  给出数列的有限项,其通项公式也并不唯一,如给出数列的前项,若,则都是数列的通项公式,教学上只要求能写出数列的一个通项公式即可.

  二、教学目标设计

  理解数列的概念、表示、分类、通项等,了解数列与函数的关系,掌握数列的通项公式,能用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的一个通项公式.发展和培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.

  三、教学重点及难点

  理解数列的概念;能根据一些数列的前几项抽象、归纳出数列的通项公式.

  四、教学流程设计

  五、教学过程设计

  一、复习回顾

  思考并回答问题:函数的定义

  二、讲授新课

  1、概念引入

  请同学们观察下面的例子,看看它们有什么共同特点:(课本p5)

  ①食品罐头从上到下排列成七层的罐头数依次为:

  3,6,9,12,15,18,21

  ②延龄草、野玫瑰、大波斯菊、金盏花、紫宛花、雏菊花的花瓣数从少到多依次排成一列数:3,5,8,13,21,34

  ③的不足近似值按精确度要求从低高考¥资%源~网到高排成一列数:

  ④1,1.7,1.73,1.732,1.7320,1.73205,⑤-2的1次幂,2次幂,3次幂,4次幂依次排成一列数:

  -2,4,-8,16,⑥无穷多个1排成一列数:1,1,1,1,1,⑦谢尔宾斯基三角形中白色三角形的个数,按面积大小,从大到小依次排列成的一列数:1,3,9,27,81,⑧依次按计算器出现的随机数:0.098,0.264,0.085,0.956

  由学生回答上面各例子的共同特点:它们均是一列数,它们是有一定次序的,由此引出数列及有关定义:

  1、定义:按一定次序排列起来的一列数叫做数列.

  其中,数列中的每一个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,第3项,第项,数列的一般形式可以写成:

  简记作

  2、函数观点:数列可以看作以正整数集(或它的有限子集)为定义域的函数,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值

  3、数列的分类:

  有穷数列:项数有限的数列(如数列①、②、⑦)

  无穷数列:项数无限的数列(如数列③、④、⑤、⑥)

  4、数列的通项:

  如果数列的第项与之间可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.

  启发学生练习找上面各数列的通项公式:

  数列①:

  数列④:

  数列⑤:(常数数列)

  数列⑥:

  指出(由学生思考得到)数列的通项公式不一定都能由观察法写出(如数列②);数列并不都有通项公式(如数列③、⑦);由数列的有限项归纳出的通项公式不一定唯一(如数列①的通项还可以写为:

  5、数列的图像:请同学练习画出数列①的图像,得出其特点:数列的图像都是一群孤立的点

  2、例题精析

  例1:根据下面的通项公式,写出数列的前5项:(课本P6)

【高中等差数列教案】相关文章:

等差数列教案12-14

等差数列教案09-25

等差数列教案14篇10-29

(推荐)等差数列教案15篇09-23

等差数列的前n项和教案08-15

《等差数列》说课稿06-28

《等差数列前n项和的公式》教案10-25

等差数列教学反思08-10

《等差数列》说课稿14篇06-12

《等差数列》说课稿14篇11-02